Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Multiple solutions of perturbed superquadratic second order Hamiltonian systems


Author: Yi Ming Long
Journal: Trans. Amer. Math. Soc. 311 (1989), 749-780
MSC: Primary 58F05; Secondary 34C25, 58E05, 58E30, 58F22, 70H05
DOI: https://doi.org/10.1090/S0002-9947-1989-0978375-4
MathSciNet review: 978375
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove the existence of infinitely many distinct $ T$-periodic solutions for the perturbed second order Hamiltonian system $ \ddot q + V'(q) = f(t)$ under the conditions that $ V:{{\mathbf{R}}^N} \to {\mathbf{R}}$ is continuously differentiable and superquadratic, and that $ f$ is square integrable and $ T$-periodic. In the proof we use the minimax method of the calculus of variation combining with a priori estimates on minimax values of the corresponding functionals.


References [Enhancements On Off] (What's this?)

  • [1] R. A. Adams, Sobolev spaces, Academic Press, New York, 1975. MR 0450957 (56:9247)
  • [2] A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc. 167 (1981), 1-32. MR 621969 (82j:35059)
  • [3] -, Forced vibrations of superquadratic Hamiltonian systems, Acta Math. 152 (1984), 143-197. MR 741053 (85g:34041)
  • [4] -, Existence of forced oscillations for some nonlinear differential equations, Comm. Pure Appl. Malth. 37 (1984), 403-442. MR 745324 (85m:34061)
  • [5] V. Benci, A. Cappozi and D. Fortunato, Periodic solutions of Hamiltonian systems of prescribed period, Mathematics Research Center, Technical Summary Report No. 2508, Univ. of Wisconsin-Madison, 1983.
  • [6] H. Berestycki, Solutions périodiques de systémes hamiltoniens, Séminaire Bourbaki, 35e année, 1982/83, No. 603, pp. 105-128. MR 728984 (85a:34058)
  • [7] E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955. MR 0069338 (16:1022b)
  • [8] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367. MR 0044116 (13:373c)
  • [9] E. R. Fadell, S. Husseini and P. H. Rabinowitz, Borsuk-Ulam theorems for arbitrary $ {S^1}$-actions and applications, Trans. Amer. Math. Soc. 174 (1982), 345-360. MR 670937 (84b:55001)
  • [10] E. R. Fadell and P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian system, Invent. Math. 45 (1978), 139-174. MR 0478189 (57:17677)
  • [11] C. Greco, On forced oscillations of Lagrangian systems, Preprint 1986. MR 928330 (89k:70036)
  • [12] Y. Long, On the density of the range for some superquadratic operators, Mathematics Research Center, Technical Summary Report No. 2859, Univ. of Wisconsin-Madison, 1985.
  • [13] -, Multiple solutions of perturbed superquadratic second order Hamiltonian systems, Mathematics Research Center, Technical Summary Report No. 2963, Univ. of Wisconsin-Madison, 1987.
  • [14] P. H. Rabinowitz, Variational methods for nonlinear eigenvalue problems, Eigenvalues of Nonlinear Problems, Ediz. Cremonese, Roma, 1974. MR 0464299 (57:4232)
  • [15] -, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), 157-184. MR 0467823 (57:7674)
  • [16] -, On large norm periodic solutions of some differential equations, Ergodic Theory and Dynamical Systems. II (A. Katok, Ed., College Park, Md., 1979-1980), Birkhäuser, 1982.
  • [17] -, Periodic solutions of Hamiltonian systems: A survey, SIAM J. Math. Anal. 13 (1982), 343-352. MR 653462 (83e:58028)
  • [18] -, Multiple critical points of perturbed symmetric functionals, Trans. Amer. Math. Soc. 272 (1982), 753-769. MR 662065 (83k:35037)
  • [19] -, Periodic solutions of large norm of Hamiltonian systems, J. Differential Equations 50 (1983), 33-48. MR 717867 (85k:34096)
  • [20] -, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math., no. 65, Amer. Math. Soc., Providence, R.I., 1986. MR 845785 (87j:58024)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F05, 34C25, 58E05, 58E30, 58F22, 70H05

Retrieve articles in all journals with MSC: 58F05, 34C25, 58E05, 58E30, 58F22, 70H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0978375-4
Keywords: Classical Hamiltonian system, perturbation, minimax method, $ {S^1}$ action, a priori estimates
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society