Bifurcation of critical periods for plane vector fields
Authors:
Carmen Chicone and Marc Jacobs
Journal:
Trans. Amer. Math. Soc. 312 (1989), 433486
MSC:
Primary 58F14; Secondary 34C25, 58F05, 58F30
MathSciNet review:
930075
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A bifurcation problem in families of plane analytic vector fields which have a nondegenerate center at the origin for all values of a parameter is studied. In particular, for such a family, the period function is defined; it assigns the minimum period to each member of the continuous band of periodic orbits (parametrized by ) surrounding the origin. The bifurcation problem is to determine the critical points of this function near the center with as bifurcation parameter. Generally, if the function , given by , vanishes to order at the origin, then it is shown that the period function, after a perturbation of , has at most critical points near the origin. If vanishes to infinite order, i.e., the center is isochronous, it is shown that the number of critical points of for perturbations of depends on the number of generators of the ideal of all Taylor coefficients of , where the coefficients are considered elements of the ring of convergent power series in . Specifically, if the ideal is generated by the first Taylor coefficients, then a perturbation of produces at most critical points of near the origin. These theorems are applied to the quadratic systems with Bautin centers and to one degree of freedom "kinetic+potential" Hamiltonian systems with polynomial potentials. For the quadratic systems a complete solution of the bifurcation problem is obtained. For the Hamiltonian systems a number of results are proved independent of the degree of the potential and a complete solution is obtained for potentials of degree less than seven. Aside from their intrinsic interest, monotonicity properties of the period function are important in the question of existence and uniqueness of autonomous boundary value problems, in the study of subharmonic bifurcation of periodic oscillations, and in the analysis of the problem of linearization. In this regard it is shown that a Hamiltonian system with a polynomial potential of degree larger than two cannot be linearized. However, while these topics are the subject of a large literature, the spirit of this paper is more akin to that of N. Bautin's treatment of the multiple Hopf bifurcation for quadratic systems and the work on various forms of the weakened Hilbert's 16th problem first posed by V. Arnold.
 [1]
A. A. Andronov, Theory of bifurcations of dynamical systems on a plane, Wiley, New York, 1973.
 [2]
V.
I. Arnol′d, Ordinary differential equations, MIT Press,
Cambridge, Mass.London, 1978. Translated from the Russian and edited by
Richard A. Silverman. MR 0508209
(58 #22707)
 [3]
V.
I. Arnol′d, Geometrical methods in the theory of ordinary
differential equations, Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Science], vol. 250,
SpringerVerlag, New YorkBerlin, 1983. Translated from the Russian by
Joseph Szücs; Translation edited by Mark Levi. MR 695786
(84d:58023)
 [4]
Alberto
Baider and Richard
Churchill, Unique normal forms for planar vector fields, Math.
Z. 199 (1988), no. 3, 303–310. MR 961812
(90k:58146), http://dx.doi.org/10.1007/BF01159780
 [5]
N.
N. Bautin, On the number of limit cycles which appear with the
variation of coefficients from an equilibrium position of focus or center
type, American Math. Soc. Translation 1954 (1954),
no. 100, 19. MR 0059426
(15,527h)
 [6]
Piotr
Biler, On the stationary solutions of Burgers’ equation,
Colloq. Math. 52 (1987), no. 2, 305–312. MR 893547
(88h:35098)
 [7]
T.
R. Blows and N.
G. Lloyd, The number of limit cycles of certain polynomial
differential equations, Proc. Roy. Soc. Edinburgh Sect. A
98 (1984), no. 34, 215–239. MR 768345
(86g:34030), http://dx.doi.org/10.1017/S030821050001341X
 [8]
N. Bourbaki, Commutative algebra, AddisonWesley, Reading, Mass., 1969.
 [9]
Egbert
Brieskorn and Horst
Knörrer, Plane algebraic curves, Birkhäuser Verlag,
Basel, 1986. Translated from the German by John Stillwell. MR 886476
(88a:14001)
 [10]
B. Buchberger, Gröbner bases: An algorithmic method in polynomial ideal theory, Multidimensional Systems Theory (N. K. Bose, ed.), Reidel, Boston, Mass., 1985.
 [11]
Carmen
Chicone, The monotonicity of the period function for planar
Hamiltonian vector fields, J. Differential Equations
69 (1987), no. 3, 310–321. MR 903390
(88i:58050), http://dx.doi.org/10.1016/00220396(87)901227
 [12]
, Geometric methods for nonlinear two point boundary value problems, J. Differential Equations (to appear).
 [13]
Carmen
Chicone and Freddy
Dumortier, A quadratic system with a nonmonotonic
period function, Proc. Amer. Math. Soc.
102 (1988), no. 3,
706–710. MR
929007 (89d:58106), http://dx.doi.org/10.1090/S00029939198809290077
 [14]
Shui
Nee Chow and Jack
K. Hale, Methods of bifurcation theory, Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Science], vol. 251, SpringerVerlag, New YorkBerlin, 1982. MR 660633
(84e:58019)
 [15]
S.N.
Chow and J.
A. Sanders, On the number of critical points of the period, J.
Differential Equations 64 (1986), no. 1, 51–66.
MR 849664
(87j:34075), http://dx.doi.org/10.1016/00220396(86)900719
 [16]
ShuiNee
Chow and Duo
Wang, On the monotonicity of the period function of some second
order equations, Časopis Pěst. Mat. 111
(1986), no. 1, 14–25, 89 (English, with Russian and Czech
summaries). MR
833153 (87e:34069)
 [17]
R. Conti, About centers of quadratic planar systems, Universita Degli Studi di Firenze, 1986.
 [18]
, About centers of planar cubic systems, Universita Degli Studi di Firenze, 1986.
 [19]
W.
A. Coppel, A survey of quadratic systems, J. Differential
Equations 2 (1966), 293–304. MR 0196182
(33 #4374)
 [20]
J.P. Françoise, Cycles limites études locale, Report /83/M/13, Inst. Hautes Études Sci., 1983.
 [21]
J.P.
Françoise and C.
C. Pugh, Keeping track of limit cycles, J. Differential
Equations 65 (1986), no. 2, 139–157. MR 861513
(88a:58162), http://dx.doi.org/10.1016/00220396(86)900306
 [22]
William
Fulton, Algebraic curves. An introduction to algebraic
geometry, W. A. Benjamin, Inc., New YorkAmsterdam, 1969. Notes
written with the collaboration of Richard Weiss; Mathematics Lecture Notes
Series. MR
0313252 (47 #1807)
 [23]
J. Guckenheimer, R. Rand, and D. Schlomink, Degenerate homoclinic cycles in perturbation of quadratic Hamiltonian systems, Preprint, 1987.
 [24]
M. Hervé, Several complex variables, Oxford Univ. Press, 1963.
 [25]
Peter
Henrici, Applied and computational complex analysis,
WileyInterscience [John Wiley & Sons], New YorkLondonSydney, 1974.
Volume 1: Power series—integration—conformal
mapping—location of zeros; Pure and Applied Mathematics. MR 0372162
(51 #8378)
 [26]
Donald
E. Knuth, The art of computer programming, 2nd ed.,
AddisonWesley Publishing Co., Reading, Mass.LondonAmsterdam, 1975.
Volume 1: Fundamental algorithms; AddisonWesley Series in Computer Science
and Information Processing. MR 0378456
(51 #14624)
 [27]
W.
S. Loud, Behavior of the period of solutions of certain plane
autonomous systems near centers, Contributions to Differential
Equations 3 (1964), 21–36. MR 0159985
(28 #3199)
 [28]
V.
A. Lunkevich and K.
S. Sibirskiĭ, Integrals of a general quadratic differential
system in cases of the center, Differentsial′nye Uravneniya
18 (1982), no. 5, 786–792, 915 (Russian). MR 661356
(83i:34005)
 [29]
A. Lyapunov, Problème général de la stabilité du mouvement, Ann. of Math. Studies, No. 17, Princeton Univ. Press, Princeton, N. J., 1949.
 [30]
Francis
J. Murray and Kenneth
S. Miller, Existence theorems for ordinary differential
equations, New York University Press, New York, 1954. MR 0064934
(16,358b)
 [31]
L.
M. Perko, On the accumulation of limit
cycles, Proc. Amer. Math. Soc.
99 (1987), no. 3,
515–526. MR
875391 (88b:34040), http://dx.doi.org/10.1090/S00029939198708753911
 [32]
I. Pleshkan, A new method of investigating the isochronicity of a system of two differential equations, Differential Equations 5 (1969), 796802.
 [33]
G.
S. Petrov, The number of zeros of complete elliptic integrals,
Funktsional. Anal. i Prilozhen. 18 (1984), no. 2,
73–74 (Russian). MR 745710
(85j:33002)
 [34]
G.
S. Petrov, Elliptic integrals and their nonoscillation,
Funktsional. Anal. i Prilozhen. 20 (1986), no. 1,
46–49, 96 (Russian). MR 831048
(87f:58031)
 [35]
Tim
Poston and Ian
Stewart, Catastrophe theory and its applications, Pitman,
LondonSan Francisco, Calif.Melbourne: distributed by FearonPitman
Publishers, Inc., Belmont, Calif., 1978. With an appendix by D. R. Olsen,
S. R. Carter and A. Rockwood; Surveys and Reference Works in Mathematics,
No. 2. MR
0501079 (58 #18535)
 [36]
R. Roussarie, private communication, 1987.
 [37]
F. Rothe, Periods of oscillation, nondegeneracy and specific heat of Hamiltonian systems in the plane, Proc. Internat. Conf. on Differential Equations and Math. Physics, Birmingham, Alabama, 1986.
 [38]
G.
Sansone and R.
Conti, Nonlinear differential equations, Revised edition.
Translated from the Italian by Ainsley H. Diamond. International Series of
Monographs in Pure and Applied Mathematics, Vol. 67, A Pergamon Press Book.
The Macmillan Co., New York, 1964. MR 0177153
(31 #1417)
 [39]
K.
S. Sibirskiĭ, On the number of limit cycles in the
neighborhood of a singular point, Differencial′nye Uravnenija
1 (1965), 53–66 (Russian). MR 0188542
(32 #5980)
 [40]
Carl
Ludwig Siegel and Jürgen
K. Moser, Lectures on celestial mechanics, SpringerVerlag,
New YorkHeidelberg, 1971. Translation by Charles I. Kalme; Die Grundlehren
der mathematischen Wissenschaften, Band 187. MR 0502448
(58 #19464)
 [41]
Renate
Schaaf, A class of Hamiltonian systems with increasing
periods, J. Reine Angew. Math. 363 (1985),
96–109. MR
814016 (87b:58029), http://dx.doi.org/10.1515/crll.1985.363.96
 [42]
A.
Seidenberg, Elements of the theory of algebraic curves,
AddisonWesley Publishing Co., Reading, Mass.LondonDon Mills, Ont., 1968.
MR
0248139 (40 #1393)
 [43]
J.
Smoller and A.
Wasserman, Global bifurcation of steadystate solutions, J.
Differential Equations 39 (1981), no. 2,
269–290. MR
607786 (82d:58056), http://dx.doi.org/10.1016/00220396(81)900772
 [44]
J.
Sotomayor and R.
Paterlini, Quadratic vector fields with finitely many periodic
orbits, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in
Math., vol. 1007, Springer, Berlin, 1983, pp. 753–766. MR 730297
(85b:58107), http://dx.doi.org/10.1007/BFb0061444
 [45]
Minoru
Urabe, Potential forces which yield periodic motions of a fixed
period, J. Math. Mech. 10 (1961), 569–578. MR 0123060
(23 #A391)
 [46]
Minoru
Urabe, The potential force yielding a periodic motion whose period
is an arbitrary continuous function of the amplitude of the velocity,
Arch. Rational Mech. Anal. 11 (1962), 27–33. MR 0141834
(25 #5231)
 [47]
A.
N. Varchenko, Estimation of the number of zeros of an abelian
integral depending on a parameter, and limit cycles, Funktsional.
Anal. i Prilozhen. 18 (1984), no. 2, 14–25
(Russian). MR
745696 (85g:32033)
 [48]
W. Vasconcelos, private communication, 1987.
 [49]
B. L. van der Waerden, Algebra, Vol. II, Ungar, New York, 1950.
 [50]
, Algebra, Vol. II, Ungar, New York, 1970.
 [51]
Jörg
Waldvogel, The period in the LotkaVolterra system is
monotonic, J. Math. Anal. Appl. 114 (1986),
no. 1, 178–184. MR 829122
(87j:92034), http://dx.doi.org/10.1016/0022247X(86)900764
 [52]
YanQian Ye, et al. Theory of limit cycles, Transl. Math. Monographs, Vol. 66, Amer. Math. Soc., Providence, R.I., 1984.
 [53]
Oscar
Zariski and Pierre
Samuel, Commutative algebra. Vol. II, The University Series in
Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.
J.TorontoLondonNew York, 1960. MR 0120249
(22 #11006)
 [1]
 A. A. Andronov, Theory of bifurcations of dynamical systems on a plane, Wiley, New York, 1973.
 [2]
 V. I. Arnold, Ordinary differential equations (R. A. Silverman, translator), MIT Press, 1978. MR 0508209 (58:22707)
 [3]
 , Geometrical methods in the theory of ordinary differential equations (J. Szücs, translator), SpringerVerlag, New York, 1983. MR 695786 (84d:58023)
 [4]
 A. Baider and R. Churchill, Unique normal forms for planar vector fields, Preprint, Hunter College, 1987. MR 961812 (90k:58146)
 [5]
 N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Amer. Math. Soc. Transl. 100 (1954), 119. MR 0059426 (15:527h)
 [6]
 P. Biler, On the stationary solutions of Burger's equation, Colloq. Math. 52 (1987), 305312. MR 893547 (88h:35098)
 [7]
 T. R. Blows and N. G. Lloyd, The number of limit cycles of certain polynomial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 98 (1984), 215239. MR 768345 (86g:34030)
 [8]
 N. Bourbaki, Commutative algebra, AddisonWesley, Reading, Mass., 1969.
 [9]
 E. Brieskorn and H. Knörrer, Plane algebraic curves (J. Stillwell, translator), BirkhäuserVerlag, Boston, Mass., 1986. MR 886476 (88a:14001)
 [10]
 B. Buchberger, Gröbner bases: An algorithmic method in polynomial ideal theory, Multidimensional Systems Theory (N. K. Bose, ed.), Reidel, Boston, Mass., 1985.
 [11]
 C. Chicone, The monotonicity of the period function for planar Hamiltonian vector fields, J. Differential Equations 69 (1987), 310321. MR 903390 (88i:58050)
 [12]
 , Geometric methods for nonlinear two point boundary value problems, J. Differential Equations (to appear).
 [13]
 C. Chicone and F. Dumortier, A quadratic system with a non monotonic period function, Proc. Amer. Math. Soc. (to appear). MR 929007 (89d:58106)
 [14]
 S. N. Chow and J. K. Hale, Methods of bifurcation theory, SpringerVerlag, New York, 1982. MR 660633 (84e:58019)
 [15]
 S. N. Chow and J. A. Sanders, On the number of critical points of the period, J. Differential Equations 64 (1986), 5166. MR 849664 (87j:34075)
 [16]
 S. N. Chow and D. Wang, On the monotonicity of the period function of some second order equations, Časopis Pěst. Mat. 111 (1986), 1425. MR 833153 (87e:34069)
 [17]
 R. Conti, About centers of quadratic planar systems, Universita Degli Studi di Firenze, 1986.
 [18]
 , About centers of planar cubic systems, Universita Degli Studi di Firenze, 1986.
 [19]
 W. A. Coppel, A survey of quadratic systems, J. Differential Equations 2 (1966), 293304. MR 0196182 (33:4374)
 [20]
 J.P. Françoise, Cycles limites études locale, Report /83/M/13, Inst. Hautes Études Sci., 1983.
 [21]
 J.P. Françoise and C. Pugh, Keeping track of limit cycles, J. Differential Equations 65 (1986), 139157. MR 861513 (88a:58162)
 [22]
 W. Fulton, Algebraic curves, Benjamin, New York, 1969. MR 0313252 (47:1807)
 [23]
 J. Guckenheimer, R. Rand, and D. Schlomink, Degenerate homoclinic cycles in perturbation of quadratic Hamiltonian systems, Preprint, 1987.
 [24]
 M. Hervé, Several complex variables, Oxford Univ. Press, 1963.
 [25]
 P. Henrici, Applied and computational complex analysis, Vol. 1, WileyInterscience, New York, 1974. MR 0372162 (51:8378)
 [26]
 D. Knuth, The art of computer programming, AddisonWesley, Reading, Mass., 1981. MR 0378456 (51:14624)
 [27]
 W. S. Loud, Behavior of the period of solutions of certain plane autonomous systems near centers, Contributions to Differential Equations 3 (1964), 2136. MR 0159985 (28:3199)
 [28]
 V. Lunkevich and K. Sibirskii, Integrals of a general quadratic differential system in cases of a center, Differential Equations 18 (1982), 563568. MR 661356 (83i:34005)
 [29]
 A. Lyapunov, Problème général de la stabilité du mouvement, Ann. of Math. Studies, No. 17, Princeton Univ. Press, Princeton, N. J., 1949.
 [30]
 F. Murray and K. Miller, Existence theorems for ordinary differential equations, New York Univ. Press, New York, 1954. MR 0064934 (16:358b)
 [31]
 L. M. Perko, On the accumulation of limit cycles, Proc. Amer. Math. Soc. 99 (1987), 515526. MR 875391 (88b:34040)
 [32]
 I. Pleshkan, A new method of investigating the isochronicity of a system of two differential equations, Differential Equations 5 (1969), 796802.
 [33]
 G. S. Petrov, Number of zeros of complete elliptic integrals, Functional Anal. Appl. 18 (1984), 7374. MR 745710 (85j:33002)
 [34]
 , Elliptic integrals and their nonoscillation, Functional Anal. Appl. 20 (1986), 3740. MR 831048 (87f:58031)
 [35]
 T. Poston and I. Stewart, Catastrophe theory and its applications, Pitman, London, 1978. MR 0501079 (58:18535)
 [36]
 R. Roussarie, private communication, 1987.
 [37]
 F. Rothe, Periods of oscillation, nondegeneracy and specific heat of Hamiltonian systems in the plane, Proc. Internat. Conf. on Differential Equations and Math. Physics, Birmingham, Alabama, 1986.
 [38]
 G. Sansone and R. Conti, Nonlinear differential equations, Macmillan, New York, 1964. MR 0177153 (31:1417)
 [39]
 K. Sibirskii, On the number of limit cycles in the neighborhood of a singular point, Differential Equations 1 (1965), 3647. MR 0188542 (32:5980)
 [40]
 C. K. Siegel and J. K. Moser, Lectures on celestial mechanics, SpringerVerlag, New York, 1971. MR 0502448 (58:19464)
 [41]
 R. Schaaf, A class of Hamiltonian systems with increasing periods, J. Reine Angew. Math. 363 (1985), 96109. MR 814016 (87b:58029)
 [42]
 A. Seidenberg, Elements of algebraic curves, AddisonWesley, Reading, Mass., 1968. MR 0248139 (40:1393)
 [43]
 J. Smoller and A. Wasserman, Global bifurcation of steady state solutions, J. Differential Equations 39 (1981), 269290. MR 607786 (82d:58056)
 [44]
 J. Sotomayor and R. Paterlini, Quadratic vector fields with finitely many periodic orbits, Internat. Sympos. on Dynamical Systems, I.M.P.A., Rio de Janeiro, 1983. MR 730297 (85b:58107)
 [45]
 M. Urabe, Potential forces which yield periodic motions of a fixed period, J. Math. Mech. 10 (1961), 569578. MR 0123060 (23:A391)
 [46]
 , The potential force yielding a periodic motion whose period is an arbitrary continuous function of the amplitude of the velocity, Arch. Rational Mech. Anal. 11 (1962), 2733. MR 0141834 (25:5231)
 [47]
 A. N. Varchenko, Estimation of the number of zeros of an Abelian integral depending on a parameter, and limit cycles, Functional Anal. Appl. 18 (1984), 98108. MR 745696 (85g:32033)
 [48]
 W. Vasconcelos, private communication, 1987.
 [49]
 B. L. van der Waerden, Algebra, Vol. II, Ungar, New York, 1950.
 [50]
 , Algebra, Vol. II, Ungar, New York, 1970.
 [51]
 J. Waldvogel, The period in the LotkaVolterra system is monotonic, J. Math. Anal. Appl. 114 (1986), 178184. MR 829122 (87j:92034)
 [52]
 YanQian Ye, et al. Theory of limit cycles, Transl. Math. Monographs, Vol. 66, Amer. Math. Soc., Providence, R.I., 1984.
 [53]
 O. Zariski and P. Samuel, Commutative algebra, Vol. II, Van Nostrand, Princeton, N.J., 1960. MR 0120249 (22:11006)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
58F14,
34C25,
58F05,
58F30
Retrieve articles in all journals
with MSC:
58F14,
34C25,
58F05,
58F30
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947198909300752
PII:
S 00029947(1989)09300752
Keywords:
Period function,
center,
bifurcation,
quadratic system,
Hamiltonian system,
linearization
Article copyright:
© Copyright 1989
American Mathematical Society
