Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Periodic orbits of maps of $ Y$


Authors: Lluís Alsedà, Jaume Llibre and Michał Misiurewicz
Journal: Trans. Amer. Math. Soc. 313 (1989), 475-538
MSC: Primary 58F20; Secondary 54H20
DOI: https://doi.org/10.1090/S0002-9947-1989-0958882-0
MathSciNet review: 958882
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce some notions that are useful for studying the behavior of periodic orbits of maps of one-dimensional spaces. We use them to characterize the set of periods of periodic orbits for continuous maps of $ Y = \{ z \in {\mathbf{C}}:{z^3} \in [0,1]\} $ into itself having zero as a fixed point. We also obtain new proofs of some known results for maps of an interval into itself.


References [Enhancements On Off] (What's this?)

  • [AL1] L. Alsedà and J. Llibre, A note on the set of periods for continuous maps of the circle which have degree one, Proc. Amer. Math. Soc. 93 (1985), 133-138. MR 766543 (86f:58131)
  • [AL2] -, Orbites périodiques minimales des applications continues du cercle dans lui même ayant un point fixe, C. R. Acad. Sci. Paris 301 (1985), 601-604. MR 816639 (87c:58099)
  • [ALMS] L. Alsedà, J. Llibre, M. Misiurewicz, and C. Simó, Twist periodic orbits and topological entropy for continuous maps of the circle of degree one which have a fixed point, Ergodic Theory Dynamical Systems 5 (1985), 501-517. MR 829854 (87h:58185)
  • [ALS] L. Alsedà, J. Llibre, and R. Serra, Minimal periodic orbits for continuous maps of the interval, Trans. Amer. Math. Soc. 286 (1984), 595-627. MR 760976 (86c:58124)
  • [Ba] S. Baldwin, Generalizations of a theorem of Šarkovskiĭ on orbits of continuous real-valued functions, Discrete Math. 67 (1987), 111-122. MR 913178 (89c:58057)
  • [Be1] C. Bernhardt, Periodic points of a class of endomorphisms of the circle, J. London Math. Soc. 25 (1982), 539-550. MR 657510 (83k:58063)
  • [Be2] -, Periodic points and topological entropy of maps of the circle, Proc. Amer. Math. Soc. 87 (1983), 516-518. MR 684649 (84h:58119)
  • [Be3] -, Periodic orbits of continuous mappings of the circle without fixed points, Ergodic Theory Dynamical Systems 1 (1981), 413-417. MR 662734 (84h:58118)
  • [Be4] -, The ordering on permutations induced by continuous maps of the real line, Ergodic Theory Dynamical Systems 7 (1987), 155-160. MR 896787 (88h:58099)
  • [Bl1] L. Block, Mappings of the interval with finitely many periodic points have zero entropy, Proc. Amer. Math. Soc. 67 (1977), 357-360. MR 0467841 (57:7692)
  • [Bl2] -, Homoclintc points of mappings of the interval, Proc. Amer. Math. Soc. 72 (1978), 576-580. MR 509258 (81m:58063)
  • [Bl3] -, Simple periodic orbits of mappings of the interval, Trans. Amer. Math. Soc. 254 (1979), 391-398. MR 539925 (80m:58031)
  • [Bl4] -, Periodic orbits of continuous mappings of the circle, Trans. Amer. Math. Soc. 260 (1980), 555-562. MR 574798 (83c:54057)
  • [Bl5] -, Periods of periodic points of maps of the circle which have a fixed point, Proc. Amer. Math. Soc. 82 (1981), 481-486. MR 612745 (82h:58042)
  • [BC] L. Block and W. A. Coppel, Stratification of continuous maps of an interval, Trans. Amer. Math. Soc. 297 (1986), 587-604. MR 854086 (88a:58164)
  • [BCJM] L. Block, E. Coven, L. Jonker, and M. Misiurewicz, Primary orbits of maps of the circle, preprint, 1987.
  • [BCN] L. Block, E. Coven, and Z. Nitecki, Minimizing topological entropy for maps of the circle, Ergodic Theory Dynamical Systems 1 (1981), 145-149. MR 661815 (83h:58058)
  • [BCMN] L. Block, E. Coven, I. Mulvey, and Z. Nitecki, Homoclinic and nonwandering points for maps of the circle, Ergodic Theory Dynamical Systems 3 (1983), 521-532. MR 753920 (86b:58101)
  • [BGMY] L. Block, J. Guckenheimer, M. Misiurewicz, and L. S. Young, Periodic points and topological entropy of one dimensional maps, Lecture Notes in Math., Vol. 819, Springer, Berlin, 1980, pp. 18-34. MR 591173 (82j:58097)
  • [BH1] L. Block and D. Hart, Statification of the space of unimodal interval maps, Ergodic Theory Dynamical Systems 3 (1983), 533-539. MR 753921 (86a:58080)
  • [BH2] -, Orbit types for maps of the interval, preprint, 1986.
  • [C] W. A. Coppel, Šarkovskiĭ-minimal orbits, Math. Proc. Cambridge Philos. Soc. 93 (1983), 397-408. MR 698345 (84h:58120)
  • [E] L. S. Efremova, Periodic points of a continuous map of a circle (in Russian), Proc. IX Internat. Conf. on Nonlinear Oscillations, Kiev, 1981, p. 121.
  • [H] C. W. Ho, On the structure of the minimum orbits of periodic points for maps of the real line, preprint, 1984.
  • [HM] C. W. Ho and C. Morris, A graph theoretic proof of Sharkovsky's Theorem on the periodic points of continuous functions, Pacific J. Math. 96 (1981), 361-370. MR 637977 (83d:58056)
  • [I] W. Imrich, Periodic points of small periods of continuous mappings of trees, Ann. Discrete Math. 27 (1985), 443-446. MR 821545 (87h:58178)
  • [IK] W. Imrich and R. Kalinowski, Periodic points of continuous mappings of trees, Ann. Discrete Math. 27 (1985), 447-460. MR 821546 (87g:58106)
  • [It] R. Ito, Minimal entropy for endomorphisms of the circle, Proc. Amer. Math. Soc. 86 (1982), 321-327. MR 667298 (84b:58093)
  • [JR] L. Jonker and D. Rand, The periodic orbits and entropy of certain maps of the unit interval, J. London Math. Soc. 22 (1980), 175-181. MR 579822 (81m:58047)
  • [LMPY] T. Li, M. Misiurewicz, G. Pianigiani, and J. Yorke, No division implies chaos, Trans. Amer. Math. Soc. 273 (1982), 191-199. MR 664037 (83i:28024)
  • [LY] T. Li and J. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992. MR 0385028 (52:5898)
  • [LR] J. Llibre and A. Reventós, On the structure of the set of periodic points of a continuous map of the interval with finitely many periodic points, Arch. Math. (Basel) 39 (1982), 331-334. MR 684402 (84g:58089)
  • [Mi] M. Misiurewicz, Periodic points of maps of degree one of a circle, Ergodic Theory Dynamical Systems 2 (1982), 221-227. MR 693977 (84j:58101)
  • [MN] M. Misiurewicz and Z. Nitecki, Combinatorial patterns and entropy for interval maps, preprint 1987.
  • [Mu] P. Mumbrú, Periodes $ 1,2,3,4,5i7$ equivalen a caos, Master's Thesis, Barcelona, 1982.
  • [N] Z. Nitecki, Topological dynamics on the interval, Ergodic Theory and Dynamical Systems, Vol. II (Proc. Special Year, Maryland, 1979-1980), Progress in Math., Birkhäuser, Boston, Mass., 1981. MR 670074 (84g:54051)
  • [Ša] A. N. Šarkovskiĭ, Coexistence of cycles of a continuous map of a line into itself, Ukrain. Mat. Z. 16 (1964), 61-71. MR 0159905 (28:3121)
  • [Si] H. W. Sieberg, Chaotic mappings on $ {S^1}$, Report No. 37, University of Bremen, 1980.
  • [Št] P. Štefan, A theorem of Šarkovskiĭ on the existence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys. 54 (1977), 237-248. MR 0445556 (56:3894)
  • [Str] P. Straffin, Periodic points of continuous functions, Math. Mag. 51 (1978), 99-105. MR 498731 (80h:58043)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F20, 54H20

Retrieve articles in all journals with MSC: 58F20, 54H20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0958882-0
Keywords: Periodic orbit, primary orbit, set of periods, Šarkovskiĭ theorem
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society