Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Stable processes with drift on the line

Author: Sidney C. Port
Journal: Trans. Amer. Math. Soc. 313 (1989), 805-841
MSC: Primary 60J30; Secondary 60J45
MathSciNet review: 997680
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The stable processes on the line having a drift are investigated. Except for the symmetric Cauchy processes with drift these are all transient and points are nonpolar sets. Explicit information about the potential kernel is obtained and this is used to obtain specific results about hitting times and places for various sets.

References [Enhancements On Off] (What's this?)

  • [1] R. M. Blumenthal and R. K. Getoor, Local times for Markov processes, Z. Wahrsch. Verw. Gebiete 3 (1964), 50-74. MR 0165569 (29:2849)
  • [2] L. Breiman, On some limit theorems similar to the arc sin law, Theor. Probab. Appl. 10 (1965), 323-331. MR 0184274 (32:1747)
  • [3] J. Bretagnolle, Résultats de Kesten sur les processus $ a\prime$ accroisements independantes, Séminaire de Probabilités V, Lecture Notes in Math., vol. 191, Springer-Verlag, Berlin and New York, 1971, pp. 21-36. MR 0368175 (51:4416)
  • [4] B. Fristed, Sample functions of processes with stationary, independent increments, Advances in Probability III, Marcel Dekker, New York, 1974, pp. 241-396. MR 0400406 (53:4240)
  • [5] I. A. Ibragimov and Yu. V. Linnik, Independent and stationary random variables.
  • [6] S. C. Ports and C. J. Stone, Infinitely divisible processes and their potential theory. I, II, Ann. Inst. Fourier (Grenoble) 21 (1971), 157-275; 179-265. MR 0346919 (49:11640)
  • [7] -, The asymmetric Cauchy processes on the line, Ann. Math. Statist. 40 (1969), 137-143. MR 0235619 (38:3922)
  • [8] S. C. Port, Occupation time and Lebesgue measure of the range of a Levy processes, Proc. Amer. Math. Soc. 103 (1988), 1241-1248. MR 955017 (89i:60148)
  • [9] W. E. Pruitt and S. J. Taylor, The behavior of asymmetric Cauchy processes for large time, Ann. Probab. 11 (1983), 302-327. MR 690130 (85i:60041)
  • [10] A. V. Skorohod, Asymptotic formulas for stable distribution laws, Selected Transl. Math. Stat. Probab., vol. 1, Amer. Math. Soc., Providence, R. I., 1961, pp. 157-161. MR 0116373 (22:7161)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60J30, 60J45

Retrieve articles in all journals with MSC: 60J30, 60J45

Additional Information

Keywords: Stable processes, stable processes with drift
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society