Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Optimal $L^ p$ and Hölder estimates for the Kohn solution of the $\overline \partial$-equation on strongly pseudoconvex domains
HTML articles powered by AMS MathViewer

by Der-Chen E. Chang PDF
Trans. Amer. Math. Soc. 315 (1989), 273-304 Request permission

Abstract:

Let $\Omega$ be an open, relatively compact subset in ${{\mathbf {C}}^{n + 1}}$, and assume the boundary of $\Omega$, $\partial \Omega$, is smooth and strongly pseudoconvex. Let $\operatorname {Op}(K)$ be an integral operator with mixed type homogeneities defined on $\overline \Omega$: i.e., $K$ has the form as follows: \[ \sum \limits _{k,l \geq 0} {{E_k}{H_l},} \] where ${E_k}$ is a homogeneous kernel of degree $- k$ in the Euclidean sense and ${H_l}$ is homogeneous of degree $- l$ in the Heisenberg sense. In this paper, we study the optimal ${L^p}$ and Hölder estimates for the kernel $K$. We also use Lieb-Range’s method to construct the integral kernel for the Kohn solution $\overline {{\partial ^\ast }} {\mathbf {N}}$ of the Cauchy-Riemann equation on the Siegel upper-half space and then apply our results to $\overline {{\partial ^\ast }} {\mathbf {N}}$. On the other hand, we prove Lieb-Range’s kernel gains $1$ in "good" directions (hence gains $1/2$ in all directions) via Phong-Stein’s theory. We also discuss the transferred kernel from the Siegel upper-half space to $\Omega$.
References
  • Michael Beals, Charles Fefferman, and Robert Grossman, Strictly pseudoconvex domains in $\textbf {C}^{n}$, Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 2, 125–322. MR 684898, DOI 10.1090/S0273-0979-1983-15087-5
  • R. Beals, P. C. Greiner and N. Stanton, ${L^p}$ and Lipschitz estimates for the $\overline \partial$-equation and the $\bar \partial$-Neumann problem, Preprint, 1986.
  • Der-Chen E. Chang, On $L^p$ and Hölder estimates for the $\overline \partial$-Neumann problem on strongly pseudo-convex domains, Math. Ann. 282 (1988), no. 2, 267–297. MR 963017, DOI 10.1007/BF01456976
  • Charles Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1–65. MR 350069, DOI 10.1007/BF01406845
  • G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Annals of Mathematics Studies, No. 75, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0461588
  • G. B. Folland and E. M. Stein, Estimates for the $\bar \partial _{b}$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522. MR 367477, DOI 10.1002/cpa.3160270403
  • G. B. Folland and Elias M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, vol. 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. MR 657581
  • P. C. Greiner and E. M. Stein, Estimates for the $\overline \partial$-Neumann problem, Mathematical Notes, No. 19, Princeton University Press, Princeton, N.J., 1977. MR 0499319
  • G. M. Henkin and J. Leiterer, Theory of functions on complex manifolds, Mathematische Lehrbücher und Monographien, II. Abteilung: Mathematische Monographien [Mathematical Textbooks and Monographs, Part II: Mathematical Monographs], vol. 60, Akademie-Verlag, Berlin, 1984. MR 795028
  • N. Kerzman, Singular integrals in complex analysis, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–41. MR 545290
  • N. Kerzman and E. M. Stein, The Cauchy kernel, the Szegö kernel, and the Riemann mapping function, Math. Ann. 236 (1978), no. 1, 85–93. MR 486468, DOI 10.1007/BF01420257
  • N. Kerzman and E. M. Stein, The Szegő kernel in terms of Cauchy-Fantappiè kernels, Duke Math. J. 45 (1978), no. 2, 197–224. MR 508154, DOI 10.1215/S0012-7094-78-04513-1
  • J. J. Kohn, A survey of the $\bar \partial$-Neumann problem, Complex analysis of several variables (Madison, Wis., 1982) Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984, pp. 137–145. MR 740877, DOI 10.1090/pspum/041/740877
  • Steven G. Krantz, Optimal Lipschitz and $L^{p}$ regularity for the equation $\overline \partial u=f$ on stongly pseudo-convex domains, Math. Ann. 219 (1976), no. 3, 233–260. MR 397020, DOI 10.1007/BF01354286
  • Steven G. Krantz, Intrinsic Lipschitz classes on manifolds with applications to complex function theory and estimates for the $\bar \partial$ and $\bar \partial _{b}$ equations, Manuscripta Math. 24 (1978), no. 4, 351–378. MR 496755, DOI 10.1007/BF01168882
  • —, Estimates for integral kernels of mixed type, fractional integral operators, and optimal estimates for the $\overline \partial$ operator, Manuscripta Math. 24 (1978), 351-387.
  • Steven G. Krantz, Function theory of several complex variables, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1982. MR 635928
  • Ingo Lieb and R. Michael Range, On integral representations and a priori Lipschitz estimates for the canonical solution of the $\bar \partial$-equation, Math. Ann. 265 (1983), no. 2, 221–251. MR 719137, DOI 10.1007/BF01460799
  • Ingo Lieb and R. Michael Range, Integral representations and estimates in the theory of the $\overline \partial$-Neumann problem, Ann. of Math. (2) 123 (1986), no. 2, 265–301. MR 835763, DOI 10.2307/1971272
  • Ingo Lieb and R. Michael Range, Integral representations and estimates in the theory of the $\overline \partial$-Neumann problem, Ann. of Math. (2) 123 (1986), no. 2, 265–301. MR 835763, DOI 10.2307/1971272
  • Alexander Nagel and E. M. Stein, Lectures on pseudodifferential operators: regularity theorems and applications to nonelliptic problems, Mathematical Notes, vol. 24, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979. MR 549321
  • F. Norguet, Introduction aux fonctions de plusieurs variables complexes: représentations intégrals, Université Paris VII, 1971. D. H. Phong, On ${L^p}$ and Hölder estimates for the $\overline \partial$ equations on strongly pseudo-convex domains, Thesis, Princeton Univ., 1977.
  • D. H. Phong, On integral representations for the Neumann operator, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), no. 4, 1554–1558. MR 526179, DOI 10.1073/pnas.76.4.1554
  • D. H. Phong and E. M. Stein, Some further classes of pseudodifferential and singular-integral operators arising in boundary value problems. I. Composition of operators, Amer. J. Math. 104 (1982), no. 1, 141–172. MR 648484, DOI 10.2307/2374071
  • D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms. I, Acta Math. 157 (1986), no. 1-2, 99–157. MR 857680, DOI 10.1007/BF02392592
  • D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms. I, Acta Math. 157 (1986), no. 1-2, 99–157. MR 857680, DOI 10.1007/BF02392592
  • Linda Preiss Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), no. 3-4, 247–320. MR 436223, DOI 10.1007/BF02392419
  • Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • —, Singular integral operators and nilpotent groups, C.I.M.E. Roma, 1975, 148-206. —, Lecture notes on the Heisenberg group, Preprint, 1983. —, Lecture notes on oscillatory integrals, Course given at Princeton Univ., 1983-1986.
  • Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
  • M. E. Taylor, Pseudo-differential operators, Princeton Univ. Press, Princeton, N.J., 1981.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 32F20, 35N15
  • Retrieve articles in all journals with MSC: 32F20, 35N15
Additional Information
  • © Copyright 1989 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 315 (1989), 273-304
  • MSC: Primary 32F20; Secondary 35N15
  • DOI: https://doi.org/10.1090/S0002-9947-1989-0937241-0
  • MathSciNet review: 937241