Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A higher order invariant of differential manifolds


Authors: Gregory A. Fredricks, Peter B. Gilkey and Phillip E. Parker
Journal: Trans. Amer. Math. Soc. 315 (1989), 373-388
MSC: Primary 55R50; Secondary 57R22, 58A20
DOI: https://doi.org/10.1090/S0002-9947-1989-0986691-5
MathSciNet review: 986691
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss conditions under which a lens space is $ s$th order flat.


References [Enhancements On Off] (What's this?)

  • [1] R. Bott and J. Milnor, On the parallelizability of spheres, Bull. Amer. Math. Soc. 64 (1958), 87-89. MR 0102804 (21:1590)
  • [2] K. Fujii, On the $ KO$-ring of $ {S^{4n + 3}}/{H_m}$ , Hiroshima Math. J. 4 (1974), 459-475. MR 0365608 (51:1860)
  • [3] P. Gilkey, The eta invariant and the $ K$-theory of odd dimensional spherical space forms, Invent. Math. 76 (1984), 421-453. MR 746537 (85m:58169)
  • [4] -, The eta invariant and $ KO$ of lens spaces, Math. Z. 194 (1987), 309-31020. MR 879934 (88b:55002)
  • [5] P. Gilkey and M. Karoubi, $ K$-theory for spherical space forms, Topology Appl. 25 (1987), 179-184. MR 884541 (88c:55009)
  • [6] T. Kobayashi, S. Murakami and M. Sugawara, Note on $ J$-groups of lens spaces, Hiroshima Math. J. 7 (1977), 387-409. MR 0431165 (55:4167)
  • [7] T. Kobayashi and M. Sugawara, $ {K_\Lambda }$-rings of lens spaces $ {L^n}(4)$, Hiroshima Math. J. 1 (1971), 253-271. MR 0312504 (47:1061)
  • [8] N. Mahammed, $ K$-théorie des espaces lenticulaires, C. R. Acad. Sci. Paris 272 (1971), 1363-- 1365. MR 0287557 (44:4761)
  • [9] T. N. Shorey and R. Tijdeman, New applications of diophantine approximations to diophantine equations, Math. Scand. 39 (1976), 5-18. MR 0447110 (56:5425)
  • [10] J. Turk, On the difference between perfect powers, Acta Arith. 45 (1986), 289-307. MR 847290 (87j:11025)
  • [11] J. Wolf, Spaces of constant curvature, $ 5$th ed., Publish or Perish, Wilmington, Del., 1984. MR 928600 (88k:53002)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55R50, 57R22, 58A20

Retrieve articles in all journals with MSC: 55R50, 57R22, 58A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0986691-5
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society