Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Some explicit cases of the Selberg trace formula for vector valued functions


Author: Jeffrey Stopple
Journal: Trans. Amer. Math. Soc. 316 (1989), 281-293
MSC: Primary 11F72
DOI: https://doi.org/10.1090/S0002-9947-1989-0939806-9
MathSciNet review: 939806
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The trace formula for $ SL(2,{\mathbf{Z}})$ can be developed for vector-valued functions which satisfy an automorphic condition involving a group representation $ \pi $. This paper makes this version explicit for the class of representations which can be realized as representations of the finite group $ PSL(2,{\mathbf{Z}}/q)$ for some prime $ q$. The body of the paper is devoted to computing, for the singular representations $ \pi $, the determinant of the scattering matrix $ \Phi (s,\pi )$ on which the applications depend. The first application is a version of the Roelcke-Selberg conjecture. This follows from known results once the scattering matrix is given.

The study of representations of $ SL(2,{\mathbf{Z}})$ in finite-dimensional vector spaces of (scalar-valued) holomorphic forms dates back to Hecke. Similar problems can be studied for vector spaces of Maass wave forms, with fixed level $ q$ and eigenvalue $ \lambda $. One would like to decompose the natural representation of $ SL(2,{\mathbf{Z}})$ in this space, and count the multiplicities of its irreducible components. The eigenvalue estimate obtained for vector-valued forms is equivalent to an asymptotic count, as $ \lambda \to \infty $, of these multiplicities.


References [Enhancements On Off] (What's this?)

  • [1] E. Hecke, Mathematische Werke, Vandenhoeck und Ruprecht, Göttingen, 1983. MR 749754 (86a:01049)
  • [2] D. Hejhal, The Selberg trace formula for $ PSL(2,{\mathbf{R}})$, Vol. II, Lecture Notes in Math., vol. 1001, Springer-Verlag, New York, 1983. MR 711197 (86e:11040)
  • [3] H. Huber, Über die Darstellungen der Automorphismengruppe einer Riemannschen fläche in den Eigenräumen des Laplace-operators. Comment. Math. Helv. 52 (1977), 177-184. MR 0492233 (58:11379)
  • [4] H. Kloosterman, The behavior of general theta functions under the modular group, and the characters of binary modular congruence groups. I, II, Ann. of Math. 47 (1946), 317-447. MR 0021032 (9:12g)
  • [5] H. Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 121 (1949), 141-183. MR 0031519 (11:163c)
  • [6] I. Piatetskii-Shapiro, Complex representations of $ GL(2,K)$ for finite fields $ K$, Contemp. Math., vol. 16, Amer. Math. Soc., Providence, R.I., 1980.
  • [7] K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin, 1957. MR 0087685 (19:393b)
  • [8] B. Randol, A remark on the multiplicity of the discrete spectrum of congruence subgroups, Proc. Amer. Math. Soc. 81 (1981), 339-340. MR 593486 (82c:58057)
  • [9] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87. MR 0088511 (19:531g)
  • [10] J.-P. Serre, Linear representations of finite groups, Graduate Texts in Math. 42, Springer-Verlag, New York, 1982. MR 0450380 (56:8675)
  • [11] J. Stopple, A functional equation for some Selberg zeta functions, Ph.D. dissertation, Univ. of California, San Diego, 1986.
  • [12] -, Selberg zeta functions with virtual characters and the class number, Acta Arith. (to appear). MR 1024415 (91c:11030)
  • [13] S. Tanaka, Construction and classification of irreducible representations of special linear group of the second order over a finite field, Osaka J. Math. 4 (1967), 65-84. MR 0219635 (36:2714)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11F72

Retrieve articles in all journals with MSC: 11F72


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0939806-9
Keywords: Scattering matrix, Roelcke-Selberg conjecture, Maass wave form
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society