Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Generators for the bordism algebra of immersions


Author: M. A. Aguilar
Journal: Trans. Amer. Math. Soc. 316 (1989), 39-51
MSC: Primary 57R90; Secondary 57R42
DOI: https://doi.org/10.1090/S0002-9947-1989-0979961-8
MathSciNet review: 979961
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let us denote by $ I(n,k)$ the group of bordism classes of immersions of closed smooth $ n$-manifolds in closed smooth $ (n + k)$-manifolds $ (k > 0)$. We can make $ I({\ast},k)$ into a graded algebra over the unoriented bordism ring. This algebra is polynomial. In this paper we give two sets of immersions which are polynomial generators.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, Infinite loop spaces, Ann. of Math. Studies, no. 90, Princeton Univ. Press, Princeton, N. J., 1978. MR 505692 (80d:55001)
  • [2] R. M. Alliston, Dyer-Lashof operations and bordism, Ph. D. Thesis. Univ. of Virginia, 1976.
  • [3] T. Brocker and T. tom Dieck, Kobordisementheorie, Lecture Notes in Math., vol. 178, Springer-Verlag, Berlin and New York, 1970. MR 0275446 (43:1202)
  • [4] W. Browder, Homology operations and loop spaces, Illinois J. Math. 4 (1960), 347-357. MR 0120646 (22:11395)
  • [5] F. R. Cohen, J. P. May and T. Lada, The homology of iterated loop spaces, Lecture Notes in Math., vol. 533, Springer-Verlag, Berlin and New York, 1976. MR 0436146 (55:9096)
  • [6] P. E. Conner and E. E. Floyd, Differentiable periodics maps, Ergeb. Math. Grenzgeb. vol. 33, Springer-Verlag, Berlin and New York, 1964. MR 0176478 (31:750)
  • [7] -, Fibring within a cobordism class, Michigan Math. J. 12 (1965), 33-47. MR 0179796 (31:4038)
  • [8] E. Dyer and R. K. Lashof, Homology of iterated loop spaces, Amer. J. Math. 84 (1962), 35-88. MR 0141112 (25:4523)
  • [9] D. S. Kahn and S. B. Priddy, The transfer and stable homotopy theory, Math. Proc. Cambridge Philos. Soc. 83 (1978), 103-111. MR 0464230 (57:4164b)
  • [10] J. P. May, The geometry of iterated loop spaces, Lecture Notes in Math., vol. 271, Springer-Verlag, Berlin and New York, 1972. MR 0420610 (54:8623b)
  • [11] J. Milnor, On the Stiefel-Whitney number of complex manifolds and of spin manifolds, Topology 3 (1965), 223-230. MR 0180977 (31:5207)
  • [12] H. Schulte-Croonenberg, Dyer-Lashof Operationen in Bordismustheorien, Ph. D. Thesis, Univ. of Wuppertal, 1981. MR 645357 (83b:55017)
  • [13] P. A. Schweitzer, Joint cobordism of immersions, Lecture Notes in Math., vol. 168, Springer-Verlag, Berlin and New York, 1970, pp. 267-282. MR 0278322 (43:4052)
  • [14] R. M. Switzer, Algebraic topology: homotopy and homology, Grundlehren Math. Wiss., Band 212, Springer-Verlag, Berlin, 1975. MR 0385836 (52:6695)
  • [15] R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86. MR 0061823 (15:890a)
  • [16] T. torn Dieck, Steenrod-Operationen in Kobordismehntheorien, Math. Z. 107 (1968), 380-401. MR 0244989 (39:6302)
  • [17] C. T. C. Wall, Cobordism of pairs, Comment. Math. Helv. 35 (1961), 136-145. MR 0124913 (23:A2221)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57R90, 57R42

Retrieve articles in all journals with MSC: 57R90, 57R42


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0979961-8
Keywords: Bordism of immersions, bordism of embeddings, infinite loop space, Dyer-Lashof operations, transfer
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society