Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Negative scalar curvature metrics on noncompact manifolds

Authors: John Bland and Morris Kalka
Journal: Trans. Amer. Math. Soc. 316 (1989), 433-446
MSC: Primary 53C20; Secondary 58G30
MathSciNet review: 987159
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove that every noncompact smooth manifold admits a complete metric of constant negative scalar curvature.

References [Enhancements On Off] (What's this?)

  • [A] T. Aubin, Metriques riemanniennes et courbure, J. Differential Geom. 4 (1970), 383-424. MR 0279731 (43:5452)
  • [AM] P. Aviles and R. McOwen, Conformal deformation to constant negative curvature on noncompact riemannian manifolds, J. Differential Geom. 27 (1988), 225-240. MR 925121 (89b:58225)
  • [B] A. L. Besse, Einstein manifolds, Springer-Verlag, 1987. MR 867684 (88f:53087)
  • [BK] J. Bland and M. Kalka, Complete metrics of negative scalar on noncompact manifolds, Contemp. Math., vol. 51, Amer. Math. Soc., Providence, R. I., 1986, pp. 31-35. MR 848930 (87k:53086)
  • [J] Z. Jin, A counterexample to the Yamabe problem for complete noncompact manifolds, Partial Differential Equations, Lecture Notes in Math., vol. 1306, Springer-Verlag, 1988, pp. 93-101. MR 1032773 (91a:53065)
  • [M] J. Milnor, Morse theory, Ann. of Math. Studies, no. 51, Princeton Univ. Press, 1963.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C20, 58G30

Retrieve articles in all journals with MSC: 53C20, 58G30

Additional Information

Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society