Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The number of solutions of norm form equations


Author: Wolfgang M. Schmidt
Journal: Trans. Amer. Math. Soc. 317 (1990), 197-227
MSC: Primary 11D57; Secondary 11J25
DOI: https://doi.org/10.1090/S0002-9947-1990-0961596-2
MathSciNet review: 961596
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A norm form is a form $ F({X_1}, \ldots ,{X_n})$ with rational coefficients which factors into linear forms over $ {\mathbf{C}}$ but is irreducible or a power of an irreducible form over $ {\mathbf{Q}}$. It is known that a nondegenerate norm form equation $ F({x_1}, \ldots ,{x_n}) = m$ has only finitely many solutions $ ({x_1}, \ldots ,{x_n}) \in {{\mathbf{Z}}^n}$. We derive explicit bounds for the number of solutions. When $ F$ has coefficients in $ {\mathbf{Z}}$, these bounds depend only on $ n$, $ m$ and the degree of $ F$, but are independent of the size of the coefficients of $ F$.


References [Enhancements On Off] (What's this?)

  • [1] E. Bombieri and W. M. Schmidt, On Thue's equation, Invent. Math. 88 (1987), 69-81. MR 877007 (88d:11026)
  • [2] E. Bombieri and J. Vaaler, On Siegel's lemma, Invent. Math. 73 (1983), 11-32. MR 707346 (85g:11049a)
  • [3] J. W. S. Cassels, An introduction to the geometry of numbers, Grundlehren Math. Wiss., vol. 99, Springer, 1959.
  • [4] H. Esnault and E. Viehweg, Dyson's Lemma for polynomials in several variables (and the theorem of Roth), Invent. Math. 78 (1984), 445-490. MR 768988 (86e:11053)
  • [5] J. H. Evertse, Upper bounds for the numbers of solutions of Diophantine equations, Math. Centrum, Amsterdam, 1983, pp. 1-127. MR 726562 (85k:11015)
  • [6] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers (3rd ed.), Oxford, Clarendon Press, 1954. MR 0067125 (16:673c)
  • [7] J. Mueller and W. M. Schmidt, Thue's equation and a conjecture of Siegel, Acta Math 160 (1988), 207-247. MR 945012 (89g:11029)
  • [8] W. M. Schmidt, Linearformen mit algebraischen Koeffizienten. II, Math. Ann. 191 (1971), 1-20. MR 0308062 (46:7177)
  • [9] -, Diophantine approximation, Lecture Notes in Math., vol. 785, Springer-Verlag, Berlin and New York, 1980. MR 568710 (81j:10038)
  • [10] -, Thue equations with few coefficients, Trans. Amer. Math. Soc. 303 (1987), 241-255. MR 896020 (88f:11016)
  • [11] -, The subspace theorem in Diophantine approximations, Compositio Math. 69 (1989), 121-173. MR 984633 (90d:11084)
  • [12] J. Silverman, The arithmetic of elliptic curves, Graduate Texts in Math., vol. 106, Springer-Verlag, Berlin and New York, 1986. MR 817210 (87g:11070)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11D57, 11J25

Retrieve articles in all journals with MSC: 11D57, 11J25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0961596-2
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society