Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Cells and the reflection representation of Weyl groups and Hecke algebras


Author: J. Matthew Douglass
Journal: Trans. Amer. Math. Soc. 318 (1990), 373-399
MSC: Primary 20G05
DOI: https://doi.org/10.1090/S0002-9947-1990-1035211-6
MathSciNet review: 1035211
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{H}$ be the generic algebra of the finite crystallographic Coxeter group $ W$, defined over the ring $ \mathbb{Q}[{u^{1/2}},{u^{ - 1/2}}]$. First, the two-sided cell corresponding to the reflection representation of $ \mathcal{H}$ is shown to consist of the nonidentity elements of $ W$ having a unique reduced expression. Next, the matrix entries of this representation are computed in terms of certain Kazhdan-Lusztig polynomials. Finally, the Kazhdan-Lusztig polynomials just mentioned are described in case $ W$ is of type $ {{\text{A}}_{l - 1}}$ or $ {{\text{B}}_l}$.


References [Enhancements On Off] (What's this?)

  • [1] A. Bjàrner, Orderings of Coxeter groups, Combinatorics and Algebra (Boulder, Colo., 1983), Contemp. Math., vol. 34, Amer. Math. Soc., Providence, R.I., 1984. MR 777701 (86i:05024)
  • [2] B. Boe, Kazhdan-Lusztig polynomials for Hermitian symmetric spaces, Trans. Amer. Math. Soc. 309 (1988), 279-294. MR 957071 (89i:22024)
  • [3] C. Curtis, N. Iwahori, and R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with $ (B,N)$-pairs, Publ. Math. Inst. Haute Etudes Sci. 40 (1971), 81-116. MR 0347996 (50:494)
  • [4] V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Mobius function, Invent. Math. 39 (1977), 187-198. MR 0435249 (55:8209)
  • [5] J. M. Douglass and B. Shelton, On the matrix coefficients of the reflection representation, Proc. Amer. Math. Soc. 105 (1989), 62-65. MR 930242 (89e:17011)
  • [6] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184. MR 560412 (81j:20066)
  • [7] A. Lascoux and M. Schutzenberger, Polynômes de Kazhdan et Lusztig pour les grassmanniennes, Young tableaux and Schur functions in algebra and geometry (Toruń, 1980), Asterisque 87 (1981), 249-266.
  • [8] G. Lusztig, On a theorem of Benson and Curtis, J. Algebra 71 (1981), 490-498. MR 630610 (83a:20053)
  • [9] -, Unipotent characters of the symplectic and odd orthogonal groups over a finite field, Invent. Math. 64 (1981), 263-296. MR 629472 (83b:20011)
  • [10] -, Characters of reductive groups over a finite field, Ann. of Math. Studies, no. 107, Princeton Univ. Press, Princeton, N.J., 1984. MR 742472 (86j:20038)
  • [11] -, Cells in Affine Weyl groups I, Algebraic Groups and Related Topics, Advanced Studies in Pure Math., 6, Kinokuniya, Tokyo, and North-Holland, Amsterdam, 1985. MR 803338 (87h:20074)
  • [12] -, Cells in Affine Weyl groups II, J. Algebra 109 (1987), 536-548. MR 902967 (88m:20103a)
  • [13] -, Leading coefficients of character values of Heeke algebras, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, R. I., 1987, pp. 235-262. MR 933415 (89b:20087)
  • [14] H. Tiwari, Reflection representations of Hecke algebras of certain Weyl groups, J. Algebra 120 (1989), 224-245. MR 977868 (89k:20072)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20G05

Retrieve articles in all journals with MSC: 20G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-1035211-6
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society