Isomorphism universal varieties of Heyting algebras

Authors:
M. E. Adams, V. Koubek and J. Sichler

Journal:
Trans. Amer. Math. Soc. **319** (1990), 309-328

MSC:
Primary 06D20; Secondary 03G25, 08A35, 18B15

MathSciNet review:
955486

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A variety is *group universal* if every group is isomorphic to the automorphism group of an algebra ; if, in addition, all finite groups are thus representable by finite algebras from , the variety is said to be *finitely group universal*. We show that finitely group universal varieties of Heyting algebras are exactly the varieties which are not generated by chains, and that a chain-generated variety is group universal just when it contains a four-element chain. Furthermore, we show that a variety of Heyting algebras is group universal whenever the cyclic group of order three occurs as the automorphism group of some . The results are sharp in the sense that, for every group universal variety and for every group , there is a proper class of pairwise nonisomorphic Heyting algebras for which .

**[1]**M. E. Adams, V. Koubek, and J. Sichler,*Homomorphisms and endomorphisms in varieties of pseudocomplemented distributive lattices (with applications to Heyting algebras)*, Trans. Amer. Math. Soc.**285**(1984), no. 1, 57–79. MR**748830**, 10.1090/S0002-9947-1984-0748830-6**[2]**Raymond Balbes and Philip Dwinger,*Distributive lattices*, University of Missouri Press, Columbia, Mo., 1974. MR**0373985****[3]**Garrett Birkhoff,*On groups of automorphisms*, Revista Unión Mat. Argentina**11**(1946), 155–157 (Spanish). MR**0015387****[4]**Gary Brenner,*A simple construction for rigid and weakly homogeneous Boolean algebras answering a question of Rubin*, Proc. Amer. Math. Soc.**87**(1983), no. 4, 601–606. MR**687625**, 10.1090/S0002-9939-1983-0687625-3**[5]**Brian A. Davey,*Dualities for Stone algebras, double Stone algebras, and relative Stone algebras*, Colloq. Math.**46**(1982), no. 1, 1–14. MR**672356****[6]**Alan Day,*Injectivity in equational classes of algebras*, Canad. J. Math.**24**(1972), 209–220. MR**0291051****[7]**R. Frucht,*Herstellung von Graphen mit vorgegebener abstrakter Gruppe*, Compositio Math.**6**(1939), 239–250 (German). MR**1557026****[8]**Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson, Michael W. Mislove, and Dana S. Scott,*A compendium of continuous lattices*, Springer-Verlag, Berlin-New York, 1980. MR**614752****[9]**T. Hecht and Tibor Katriňák,*Equational classes of relative Stone algebras*, Notre Dame J. Formal Logic**13**(1972), 248–254. MR**0295978****[10]**Z. Hedrlín and A. Pultr,*On full embeddings of categories of algebras*, Illinois J. Math.**10**(1966), 392–406. MR**0191858****[11]**V. A. Jankov,*The construction of a sequence of strongly independent superintuitionistic propositional calculi*, Dokl. Akad. Nauk SSSR**181**(1968), 33–34 (Russian). MR**0232661****[12]**John L. Kelley,*General topology*, D. Van Nostrand Company, Inc., Toronto-New York-London, 1955. MR**0070144****[13]**V. Koubek and J. Sichler,*Universal varieties of distributive double 𝑝-algebras*, Glasgow Math. J.**26**(1985), no. 2, 121–131. MR**798738**, 10.1017/S0017089500005887**[14]**R. McKenzie and J. D. Monk,*On automorphism groups of Boolean algebras*, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. II, North-Holland, Amsterdam, 1975, pp. 951–988. Colloq. Math. Soc. János Bolyai, Vol. 10. MR**0376476****[15]**Jaroslav Nešetřil and Aleš Pultr,*Representing monoids by mappings preserving equivalences*, Algebra Universalis**1**(1971/72), 155–162. MR**0316528****[16]**H. A. Priestley,*Representation of distributive lattices by means of ordered stone spaces*, Bull. London Math. Soc.**2**(1970), 186–190. MR**0265242****[17]**H. A. Priestley,*Ordered topological spaces and the representation of distributive lattices*, Proc. London Math. Soc. (3)**24**(1972), 507–530. MR**0300949****[18]**H. A. Priestley,*Ordered sets and duality for distributive lattices*, Orders: description and roles (L’Arbresle, 1982) North-Holland Math. Stud., vol. 99, North-Holland, Amsterdam, 1984, pp. 39–60 (English, with French summary). MR**779844****[19]**Aleš Pultr and Věra Trnková,*Combinatorial, algebraic and topological representations of groups, semigroups and categories*, North-Holland Mathematical Library, vol. 22, North-Holland Publishing Co., Amsterdam-New York, 1980. MR**563525****[20]**J. Sichler,*Group-universal unary varieties*, Algebra Universalis**11**(1980), no. 1, 12–21. MR**593010**, 10.1007/BF02483079

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
06D20,
03G25,
08A35,
18B15

Retrieve articles in all journals with MSC: 06D20, 03G25, 08A35, 18B15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1990-0955486-9

Article copyright:
© Copyright 1990
American Mathematical Society