Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Isomorphism universal varieties of Heyting algebras


Authors: M. E. Adams, V. Koubek and J. Sichler
Journal: Trans. Amer. Math. Soc. 319 (1990), 309-328
MSC: Primary 06D20; Secondary 03G25, 08A35, 18B15
DOI: https://doi.org/10.1090/S0002-9947-1990-0955486-9
MathSciNet review: 955486
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A variety $ \mathbf{V}$ is group universal if every group $ G$ is isomorphic to the automorphism group $ {\operatorname{Aut}}(A)$ of an algebra $ A \in \mathbf{V}$; if, in addition, all finite groups are thus representable by finite algebras from $ \mathbf{V}$, the variety $ \mathbf{V}$ is said to be finitely group universal. We show that finitely group universal varieties of Heyting algebras are exactly the varieties which are not generated by chains, and that a chain-generated variety $ \mathbf{V}$ is group universal just when it contains a four-element chain. Furthermore, we show that a variety $ \mathbf{V}$ of Heyting algebras is group universal whenever the cyclic group of order three occurs as the automorphism group of some $ A \in \mathbf{V}$. The results are sharp in the sense that, for every group universal variety and for every group $ G$, there is a proper class of pairwise nonisomorphic Heyting algebras $ A \in \mathbf{V}$ for which $ {\operatorname{Aut}}(A) \cong G$.


References [Enhancements On Off] (What's this?)

  • [1] M. E. Adams, V. Koubek, and J. Sichler, Homomorphisms and endomorphisms in varieties of pseudocomplemented distributive lattices (with applications to Heyting algebras), Trans. Amer. Math. Soc. 285 (1984), 57-79. MR 748830 (86g:06018)
  • [2] R. Balbes and Ph. Dwinger, Distributive lattices, Univ. of Missouri Press, Columbia, Mo., 1974. MR 0373985 (51:10185)
  • [3] G. Birkhoff, On groups of automorphisms, Rev. Un. Mat. Argentina 11 (1946), 155-157. MR 0015387 (7:411a)
  • [4] G. Brenner, A simple construction for rigid and weakly homogeneous Boolean algebras answering a question of Rubin, Proc. Amer. Math. Soc. 87 (1983), 601-606. MR 687625 (84d:06019)
  • [5] B. A. Davey, Dualities for Stone algebras, double Stone algebras and relative Stone algebras, Colloq. Math. 46 (1982), 1-14. MR 672356 (83m:06011)
  • [6] Alan Day, Injectivity in equational classes of algebras, Canad. J. Math. 24 (1972), 209-220. MR 0291051 (45:145)
  • [7] R. Frucht, Herstellung von Graphen mit vorgegebener abstrakten Gruppe, Compositio Math. 6 (1938), 239-250. MR 1557026
  • [8] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott, A compendium of continuous lattices, Springer-Verlag, Berlin, Heidelberg and New York, 1980. MR 614752 (82h:06005)
  • [9] T. Hecht and T. Katriňák, Equational classes of relative Stone algebras, Notre Dame J. Formal Logic 13 (1972), 248-254. MR 0295978 (45:5039)
  • [10] Z. Hedrlín and A. Pultr, On full embeddings of categories of algebras, Illinois J. Math. 10 (1966), 392-406. MR 0191858 (33:85)
  • [11] V. A. Jankov, Constructing a sequence of strongly independent superintuitionistic propositional calculi, Soviet Math. Dokl. 9 (1968), 806-807. MR 0232661 (38:984)
  • [12] J. L. Kelley, General topology, Van Nostrand Reinhold, New York, 1955. MR 0070144 (16:1136c)
  • [13] V. Koubek and J. Sichler, Universal varieties of distributive double $ p$-algebras, Glasgow J. Math. 26 (1985), 121-131. MR 798738 (87b:08025)
  • [14] R. McKenzie and J. D. Monk, On automorphism groups of Boolean algebras, Infinite and Finite Sets (Colloq., Keszthely, 1973; dedicated to P. Erdàs on his 60th birthday), Vol. II, Collog. Math. Soc. Jámos Bolyai, Vol. 10, North-Holland, Amsterdam, 1975, pp. 951-988. MR 0376476 (51:12651)
  • [15] J. Nešetil and A. Pultr, Representing monoids by mappings preserving equivalences, Algebra Universalis 1 (1971), 155-162. MR 0316528 (47:5075)
  • [16] H. A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970), 186-190. MR 0265242 (42:153)
  • [17] -, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. (3) 24 (1972), 507-530. MR 0300949 (46:109)
  • [18] -, Ordered sets and duality for distributive lattices, Ann. Discrete Math. 23 (1984), 39-60. MR 779844 (86h:06027)
  • [19] A. Pultr and V. Trnková, Combinatorial, algebraic and topological representations of groups, semigroups and categories, North-Holland, Amsterdam, 1980. MR 563525 (81d:18001)
  • [20] J. Sichler, Group universal unary varieties, Algebra Universalis 11 (1980), 12-21. MR 593010 (82a:08006)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 06D20, 03G25, 08A35, 18B15

Retrieve articles in all journals with MSC: 06D20, 03G25, 08A35, 18B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0955486-9
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society