Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Jumps of orderings


Authors: C. J. Ash, C. G. Jockusch and J. F. Knight
Journal: Trans. Amer. Math. Soc. 319 (1990), 573-599
MSC: Primary 03D30
DOI: https://doi.org/10.1090/S0002-9947-1990-0955487-0
MathSciNet review: 955487
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Here it is shown that for each recursive ordinal $ \alpha \geqslant 2$ and each Turing degree $ {\mathbf{d}} > {{\mathbf{0}}^{(\alpha )}}$, there is a linear ordering $ {\mathbf{A}}$ such that $ {\mathbf{d}}$ is least among the $ \alpha $th jumps of degrees of (open diagrams of) isomorphic copies of $ {\mathbf{A}}$ and for $ \beta < \alpha $, the set of $ \beta $th jumps of degrees of copies of $ {\mathbf{A}}$ has no least element.


References [Enhancements On Off] (What's this?)

  • [A] C. J. Ash, Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees, Trans. Amer. Math. Soc. 298 (1986), 497-514. Correction, 310 (1988), 851. MR 860377 (87j:03060)
  • [AK] C. J. Ash and J. F. Knight, Pairs of structures, Ann. Pure Appl. Logic (to appear).
  • [AKMS] C. J. Ash, J. F. Knight, M. Manasse, and T. Slaman, Generic copies of countable structures, Ann. Pure Appl. Logic 42 (1989), 195-205. MR 998606 (90d:03065)
  • [H] L. Harrington, Building nonstandard models of Peano arithmetic, handwritten notes, 1979.
  • [JS] C. G. Jockusch and R. I. Soare, Degrees of linear orderings not isomorphic to recurisve ones, preprint.
  • [K$ _{1}$] J. F. Knight, Effective construction of models, Logic Colloquium '84 (J. B. Paris, A. J. Wilkie, and G. M. Wilmers, eds.), North-Holland, 1986, pp. 105-119. MR 861421 (87m:03051)
  • [K$ _{2}$] -, Degrees coded in jumps of orderings, J. Symbolic Logic 51 (1986), 1034-1042. MR 865929 (88j:03030)
  • [K$ _{3}$] -, Degrees of models with prescribed Scott set, Classification Theory: Proc., Chicago, 1985 (J. Baldwin, ed.), Lecture Notes in Math., vol. 1292, Springer-Verlag, 1988, pp. 182191.
  • [K$ _{4}$] -, A metatheorem on constructions by finitely many workers, J. Symbolic Logic (to appear). MR 1056389 (91i:03089)
  • [L] M. Lerman, On recursive linear orderings, Logic year 1979-80 (Univ. of Conn.), Lecture Notes in Math., vol. 859, Springer-Verlag, 1981, pp. 132-142. MR 619867 (82i:03059)
  • [Mac] J. Macintyre, Transfinite extensions of Friedberg's completeness criterion, J. Symbolic Logic 42 (1977), 1-10. MR 0491099 (58:10371)
  • [Mar] D. Marker, Degrees of models of true arithmetic, Proc. of the Herbrand Sympos. (J. Stern, ed.), North-Holland, 1982, pp. 233-242. MR 757032 (85i:03109)
  • [Ri] L. J. Richter, Degrees of structures, J. Symbolic Logic 46 (1981), 723-731. MR 641486 (83d:03048)
  • [Ro] H. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, 1967. MR 0224462 (37:61)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 03D30

Retrieve articles in all journals with MSC: 03D30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0955487-0
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society