Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Local behavior of solutions of quasilinear elliptic equations with general structure


Authors: J.-M. Rakotoson and William P. Ziemer
Journal: Trans. Amer. Math. Soc. 319 (1990), 747-764
MSC: Primary 35J60; Secondary 35B65, 35D10, 35J70
DOI: https://doi.org/10.1090/S0002-9947-1990-0998128-9
MathSciNet review: 998128
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is motivated by the observation that solutions to certain variational inequalities involving partial differential operators of the form $ \operatorname{div} A(x,u,\nabla u) + B(x,u,\nabla u)$, where $ A$ and $ B$ are Borel measurable, are solutions to the equation $ \operatorname{div} A(x,u,\nabla u) + B(x,u,\nabla u) = \mu $ for some nonnegative Radon measure $ \mu $. Among other things, it is shown that if $ u$ is a Hölder continuous solution to this equation, then the measure $ \mu $ satisfies the growth property $ \mu [B(x,r)] \leqslant M{r^{n - p + \varepsilon }}$ for all balls $ B(x,r)$ in $ {{\mathbf{R}}^n}$. Here $ \varepsilon $ depends on the Hölder exponent of $ u$ while $ p > 1$ is given by the structure of the differential operator. Conversely, if $ \mu $ is assumed to satisfy this growth condition, then it is shown that $ u$ satisfies a Harnack-type inequality, thus proving that $ u$ is locally bounded. Under the additional assumption that $ A$ is strongly monotonic, it is shown that $ u$ is Hölder continuous.


References [Enhancements On Off] (What's this?)

  • [A] D. Adams, Traces of potentials arising from translation invariant operators, Ann. Scuola Norm. Sup. Pisa 25 (1971 ), 203-217. MR 0287301 (44:4508)
  • [DT] E. DiBenedetto and N. Trudinger, Harnack inequalities for quasi-minima of variational integrals, Ann. Inst. H. Poincaré. Anal. Non Linéaire 1 (1984), 295-308. MR 778976 (86g:49007)
  • [G] M. Giaquinta, Multiple integrals in the calculus of variation and nonlinear elliptic systems, Ann. of Math. Stud., no. 105, Princeton Univ. Press, Princeton, N.J., 1983. MR 717034 (86b:49003)
  • [GZ] R. Gariepy and W. P. Ziemer, A regularity condition at the boundary for solutions of quasilinear elliptic equations, Arch. Rational Mech. Anal. 67 (1977), 25-39. MR 0492836 (58:11898)
  • [GT] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Springer, New York, 1983. MR 737190 (86c:35035)
  • [HW] L. Hedberg and T. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 23 (1983), 161-187. MR 727526 (85f:31015)
  • [JM] F. John and L. Nirenberg, On functions of bounded means oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. MR 0131498 (24:A1348)
  • [LU] O. A. Ladyzhenskaya and N. N. Ural' tseva, Linar and quasilinear elliptic equations, Academic Press, 1968. MR 0244627 (39:5941)
  • [LS] H. Levy and G. Stampacchia, On the smoothness of superharmonics which solve the minimum problem, J. Analyse Math. 23 (1970), 227-236. MR 0271383 (42:6266)
  • [L] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969.
  • [ME] N. Meyers and A. Elcrat, Some results on regularity for solutions of nonlinear elliptic systems and quasi-regular funtions, Duke Math. J. 42 (1975), 121-136. MR 0417568 (54:5618)
  • [MZ] J. H. Michael and W. P. Ziemer, Interior regularity for solutions of obstacle problems, Nonlinear Analysis, TMA, 10 (1986), 1427-1448. MR 869551 (88k:35083)
  • [MRS1] B. Michaux, J. M. Rakotoson, and J. Shen, On the existence and regularity of solutions of a quasilinear mixed equations of Leray-Lions type, Preprint, Institute for Appl. Math. and Sci. Comp., #8807, 1988; Acta Appl. Math. 12 (1988), 287-316. MR 973948 (89m:35155)
  • [MRS2] -, On the approximation of a quasilinear mixed problem, Preprint, Institute for Appl. Math. and Sci. Comp., #8808, 1988, MMAN (to appear).
  • [RA] J. M. Rakotoson, Rearrangement relatif dans le equations elliptiques quasilineaire avec un second membre distribution, J. Differential Equations 66 (1987), 391-419. MR 876805 (88e:35067)
  • [RT] J. M. Rakotoson and R. Temam, Relative rearrangement in quasilinear variational elliptic inequalities, Indiana Univ. Math. J. 36 (1987). MR 916743 (89a:35101)
  • [S] J. Serrin, Local behavior of solutions of quasilinear equations, Acta Math. 111 (1964), 247-302. MR 0170096 (30:337)
  • [T] N. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721-747. MR 0226198 (37:1788)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J60, 35B65, 35D10, 35J70

Retrieve articles in all journals with MSC: 35J60, 35B65, 35D10, 35J70


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0998128-9
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society