Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Elliptic problems involving an indefinite weight


Author: M. Faierman
Journal: Trans. Amer. Math. Soc. 320 (1990), 253-279
MSC: Primary 35P10; Secondary 35J40
DOI: https://doi.org/10.1090/S0002-9947-1990-0962280-1
MathSciNet review: 962280
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a selfadjoint elliptic eigenvalue problem, which is derived formally from a variational problem, of the form $ Lu = \lambda \omega (x)u$ in $ \Omega$, $ {B_j}u = 0$ on $ \Gamma $, $ j = 1, \ldots ,m$, where $ L$ is a linear elliptic operator of order $ 2m$ defined in a bounded open set $ \Omega \subset {{\mathbf{R}}^n}\quad (n \geq 2)$ with boundary $ \Gamma$, the $ {B_j}$ are linear differential operators defined on $ \Gamma$, and $ \omega$ is a real-valued function assuming both positive and negative values. For our problem we prove the completeness of the eigenvectors and associated vectors in two function spaces which arise naturally in such an indefinite problem. We also establish some results concerning the eigenvalues of the problem which complement the known results and investigate the structure of the principal subspaces.


References [Enhancements On Off] (What's this?)

  • [1] R. A. Adams, Sobolev spaces, Academic, New York, 1975. MR 0450957 (56:9247)
  • [2] S. Agmon, The coerciveness problem for integro-differential forms, J. Analyse Math. 6 (1958), 183-223. MR 0132912 (24:A2748)
  • [3] -, Remarks on self-adjoint and semi-bounded elliptic boundary value problems, Proc. Internat. Sympos. on Linear Spaces (Jerusalem, 1960), Pergamon, Oxford, 1961, pp. 1-13. MR 0133591 (24:A3417)
  • [4] -, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math. 15 (1962), 119-147. MR 0147774 (26:5288)
  • [5] -, Lectures on elliptic boundary value problems, Van Nostrand, Princeton, N. J., 1965. MR 0178246 (31:2504)
  • [6] R. Beals, Indefinite Sturm-Liouville problems and half-range completeness, J. Differential Equations 56 (1985), 391-407. MR 780497 (86i:34032)
  • [7] P. A. Binding and K. Seddighi, On root vectors of self-adjoint pencils, J. Funct. Anal. 70 (1987), 117-125. MR 870757 (88c:47066)
  • [8] M. S. Birman and M. Z. Solomjak, Spectral asymptotics of nonsmooth elliptic operators. II, Trans. Moscow Math. Soc. 28 (1973), 1-32.
  • [9] -, Asymptotic behaviour of the spectrum of differential equations, J. Soviet Math. 12 (1979), 247-282.
  • [10] -, Asymptotics of the spectrum of variational problems on solutions of elliptic equations, Siberian Math. J. 20 (1979), 1-15.
  • [11] -, Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory, Amer. Math. Soc. Transl. (2) 114 (1980). MR 562305 (80m:46026)
  • [12] J. Bognár, Indefinite inner product spaces, Springer-Verlag, New York, 1974.
  • [13] D. G. De Figueiredo, Positive solutions of semilinear elliptic problems, Lecture Notes in Math., vol. 957, Springer-Verlag, New York, 1982, pp. 34-87. MR 679140 (84k:35067)
  • [14] M. Faierman, The eigenvalues of a multiparameter system of differential equations, Appl. Anal. 19 (1985), 275-290. MR 799990 (86h:34017)
  • [15] -, Expansions in eigenfunctions of a two-parameter system of differential equations. II, Quaestiones Math. 10 (1987), 217-249. MR 884860 (88h:34016)
  • [16] M. Faierman and G. F. Roach, Full and half-range eigenfunction expansions for an elliptic boundary value problem involving an indefinite weight, Proc. 1987 Equadiff Conference, Lecture Notes in Pure and Appl. Math., vol. 118, Dekker, New York and Basel, 1989, pp. 231-236. MR 1021720 (90j:35152)
  • [17] J. Fleckinger and A. B. Mingarelli, On the eigenvalues of non-definite elliptic operators, Math. Studies, vol. 92, North-Holland, Amsterdam, 1984, pp. 219-227. MR 799351 (86j:35072)
  • [18] J. Fleckinger-Pelle, Asymptotics of eigenvalues for some non-definite elliptic problems, Lecture Notes in Math., vol. 1151, Springer-Verlag, Berlin and New York, 1985, pp. 148-156. MR 826284 (87g:35177)
  • [19] J. Fleckinger and M. L. Lapidus, Eigenvalues of elliptic boundary value problems with an indefinite weight function, Trans. Amer. Math. Soc. 295 (1986), 305-324. MR 831201 (87j:35282)
  • [20] -, Remainder estimates for the asymptotics of elliptic eigenvalue problems with indefinite weights, Arch. Rational Mech. Anal. 98 (1987), 329-356. MR 872751 (88b:35149)
  • [21] H. E. Gerlach, Beitrag zur Theorie einer Klasse von Randwertaufgaben, Thesis, Saarbrücken, 1962.
  • [22] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Springer-Verlag, Berlin and New York, 1983. MR 737190 (86c:35035)
  • [23] O. Haupt, Untersuchungen über Oszillationstheoreme, Teubner, Leipzig, 1911.
  • [24] -, Über eine Methode zum Beweise von Oszillationstheoreme, Math. Ann. 76 (1915), 67-104.
  • [25] P. Hess, On the relative completeness of the generalized eigenvectors of elliptic eigenvalue problems with indefinite weight functions, Math. Ann. 270 (1985), 467-475. MR 774371 (86g:35143)
  • [26] H. Hilb, Eine Erweiterung des Kleinschen Oszillationstheorems, Jabresbericht d. d. Math. Ver. 16 (1907), 279-285.
  • [27] D. Hilbert Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen, Chelsea, New York, 1953. MR 0056184 (15:37b)
  • [28] E. Hàlmgren, Über Randwertaufgaben bei einer linearen Differentialgleichungen zweiter Ordnung, Ark. Mat. Astronom. Fysik 1 (1904), 401-417.
  • [29] L. Hàrmander, Linear partial differential operators, Springer-Verlag, Berlin and New York, 1976.
  • [30] -, Uniqueness theorems for second order elliptic differential equations, Comm. Partial Differential Equations 8 (1983), 21-64. MR 686819 (85c:35018)
  • [31] I. S. Iohvidov, On the spectra of Hermitian and unitary operators in a space with an indefinite metric, Dokl. Akad. Nauk SSSR 71 (1950), 225-228. MR 0035923 (12:33a)
  • [32] K. Jàrgens, Spectral theory of second order ordinary differential equations, Aarhus Universitet Lecture Notes, 1964.
  • [33] T. Kato, Perturbation theory for linear operators, 2nd ed., Springer-Verlag, Berlin and New York, 1976. MR 0407617 (53:11389)
  • [34] J. L. Lions, Problèmes aux limites dans les équations aux derivées partielles, Les Presses de l'Université de Montréal, Montréal, 1965. MR 0251372 (40:4602)
  • [35] J. L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, vol. I, Springer-Verlag, Berlin and New York, 1972. MR 0350177 (50:2670)
  • [36] A. I. Mal'cev, Foundations of linear algebra, Freeman, San Francisco, Calif., 1963. MR 0166200 (29:3477)
  • [37] A. B. Mingarelli, Indefinite Sturm-Liouville problems, Lecture Notes in Math., vol. 964, Springer-Verlag, Berlin and New York, 1983, pp. 519-528. MR 693136 (84f:34037)
  • [38] -, On the existence of nonsimple real eigenvalues for general Sturm-Liouville problems, Proc. Amer. Math. Soc. 89 (1983), 457-460. MR 715866 (85f:34040)
  • [39] -, A survey of the regular weighted Sturm-Liouville problem--the non-definite case, Proc. Workshop on Applied Differential Equations, Tsinghua University, Beijing, 3-7 June 1985 (X. Shutie and P. Fuquan eds.), World Scientific Publishing, Singapore and Philadelphia, Pa., 1986, pp. 109-137.
  • [40] A. Pleijel, Sur la distribution des valeurs propres de problèmes régis par l'équation $ \Delta u + \lambda k(x,y)u = 0$, Ark. Mat. Astronom. Fysik 29B (1942), 1-8.
  • [41] R. G. D. Richardson, Theorems of oscillation for two linear differential equations of the second order with two parameters, Trans. Amer. Math. Soc. 13 (1912), 22-34. MR 1500902
  • [42] -, Über die notwendigen und hindreichenden Bedingungen für das Bestehen eines Kleinschen Oszillationstheorems, Math. Ann. 73 (1913), 289-304 (errata, Math. Ann. 74 (1913), 312). MR 1511734
  • [43] -, Contributions to the study of oscillation properties of the solutions of linear differential equations of the second order, Amer. J. Math. 40 (1918), 283-316. MR 1506360
  • [44] G. V. Rozenbljum, The distribution of the discrete spectrum for singular differential operators, Soviet Math. Dokl. 13 (1972), 245-249. MR 0295148 (45:4216)
  • [45] G. Stampacchia, Equations elliptiques du second ordre à coefficients discontinus, Les Presses de l'Université de Montréal, Montréal, 1966. MR 0251373 (40:4603)
  • [46] H. F. Weinberger, Variational methods for eigenvalue approximation, CBMS Regional Conf. Ser. Appl. Math., vol. 15, SIAM, Philadelphia, Pa., 1974. MR 0400004 (53:3842)
  • [47] K. Yosida, Functional analysis, 5th ed., Springer-Verlag, New York, 1978. MR 0500055 (58:17765)
  • [48] A. C. Zaanen, Linear analysis, North-Holland, Amsterdam, 1953.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35P10, 35J40

Retrieve articles in all journals with MSC: 35P10, 35J40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0962280-1
Keywords: Elliptic boundary value problems, indefinite weight function, eigenvalues, eigenvectors, associated vectors, completeness, Pontrjagin space
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society