Layer potentials for elastostatics and hydrostatics in curvilinear polygonal domains

Author:
Jeff E. Lewis

Journal:
Trans. Amer. Math. Soc. **320** (1990), 53-76

MSC:
Primary 35J25; Secondary 35Q20, 35S05, 45K05, 47A53, 47G05, 73C02, 76D07

MathSciNet review:
1005935

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The symbolic calculus of pseudodifferential operators of Mellin type is applied to study layer potentials on a plane domain whose boundary is a curvilinear polygon. A "singularity type" is a zero of the determinant of the matrix of symbols of the Mellin operators and can be used to calculate the "bad values" of for which the system is not Fredholm on .

Using the method of layer potentials we study the singularity types of the system of elastostatics

**[C]**Martin Costabel,*Singular integral operators on curves with corners*, Integral Equations Operator Theory**3**(1980), no. 3, 323–349. MR**580713**, 10.1007/BF01701497**[DKV]**B. E. J. Dahlberg, C. E. Kenig, and G. C. Verchota,*Boundary value problems for the systems of elastostatics in Lipschitz domains*, Duke Math. J.**57**(1988), no. 3, 795–818. MR**975122**, 10.1215/S0012-7094-88-05735-3**[E]**Johannes Elschner,*Asymptotics of solutions to pseudodifferential equations of Mellin type*, Math. Nachr.**130**(1987), 267–305. MR**885635**, 10.1002/mana.19871300125**[FKV]**E. B. Fabes, C. E. Kenig, and G. C. Verchota,*The Dirichlet problem for the Stokes system on Lipschitz domains*, Duke Math. J.**57**(1988), no. 3, 769–793. MR**975121**, 10.1215/S0012-7094-88-05734-1**[La]**O. A. Ladyzhenskaya,*The mathematical theory of viscous incompressible flow*, Revised English edition. Translated from the Russian by Richard A. Silverman, Gordon and Breach Science Publishers, New York-London, 1963. MR**0155093****[LP]**Jeff E. Lewis and Cesare Parenti,*Pseudodifferential operators of Mellin type*, Comm. Partial Differential Equations**8**(1983), no. 5, 477–544. MR**695401**, 10.1080/03605308308820276**[F]**Samuel N. Karp and Frank C. Karal Jr.,*The elastic-field behavior in the neighborhood of a crack of arbitrary angle*, Comm. Pure Appl. Math.**15**(1962), 413–421. MR**0167026****[Ku]**V. D. Kupradze,*Potential methods in the theory of elasticity*, Translated from the Russian by H. Gutfreund. Translation edited by I. Meroz, Israel Program for Scientific Translations, Jerusalem; Daniel Davey & Co., Inc., New York, 1965. MR**0223128****[St]**Elias M. Stein,*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095****[V]**D. Vasilopoulos,*On the determination of higher order terms of singular elastic stress fields near corners*, Numer. Math.**53**(1988), no. 1-2, 51–95. MR**946369**, 10.1007/BF01395878

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35J25,
35Q20,
35S05,
45K05,
47A53,
47G05,
73C02,
76D07

Retrieve articles in all journals with MSC: 35J25, 35Q20, 35S05, 45K05, 47A53, 47G05, 73C02, 76D07

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1990-1005935-5

Article copyright:
© Copyright 1990
American Mathematical Society