Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Symmetry properties of the solutions to Thomas-Fermi-Dirac-von Weizsäcker type equations

Authors: Rafael D. Benguria and Cecilia Yarur
Journal: Trans. Amer. Math. Soc. 320 (1990), 665-675
MSC: Primary 35J60; Secondary 35A30, 35Q20, 81C05
MathSciNet review: 974511
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a semilinear elliptic equation with a spherically symmetric potential (specifically, Thomas-Fermi-Dirac-von Weizsäcker type equations without electronic repulsion). Assuming some regularity properties of the solutions at the origin and at infinity, we prove that the solutions have spherical symmetry.

References [Enhancements On Off] (What's this?)

  • [1] Richard Bellman, Stability theory of differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. MR 0061235
  • [2] Rafael Benguria, Dependence of the Thomas-Fermi energy on the nuclear coordinates, Comm. Math. Phys. 81 (1981), no. 3, 419–428. MR 634162
  • [3] Rafael Benguria, Haïm Brézis, and Elliott H. Lieb, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Comm. Math. Phys. 79 (1981), no. 2, 167–180. MR 612246
  • [4] Rafael Benguria and Lorenzo Jeanneret, Existence and uniqueness of positive solutions of semilinear elliptic equations with Coulomb potentials on 𝑅³, Comm. Math. Phys. 104 (1986), no. 2, 291–306. MR 836006
  • [5] B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209–243. MR 544879
  • [6] -, Symmetry of positive solutions of nonlinear equations in $ {\mathbb{R}^N}$, Math. Anal. Appl. 7A (1981), 369-402.
  • [7] Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
  • [8] Thomas Hoffmann-Ostenhof, A comparison theorem for differential inequalities with applications in quantum mechanics, J. Phys. A 13 (1980), no. 2, 417–424. MR 558638
  • [9] Tosio Kato, Schrödinger operators with singular potentials, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), 1972, pp. 135–148 (1973). MR 0333833
  • [10] Elliott H. Lieb, Thomas-Fermi and related theories of atoms and molecules, Rev. Modern Phys. 53 (1981), no. 4, 603–641. MR 629207, 10.1103/RevModPhys.53.603
  • [11] Elliott H. Lieb, Analysis of the Thomas-Fermi-von Weizsäcker equation for an infinite atom without electron repulsion, Comm. Math. Phys. 85 (1982), no. 1, 15–25. MR 667764
  • [12] E. H. Lieb and D. A. Liberman, Numerical calculation of the Thomas-Fermi-von Weizsäcker function for an infinite atom without electron repulsion, Los Alamos Report No. LA-9186-MS, 1982.
  • [13] Michael Reed and Barry Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0493420
  • [14] J. L. Vázquez and C. Yarur, Isolated singularities of the solutions of the Schrödinger equation with a radial potential, Arch. Rational Mech. Anal. 98 (1987), no. 3, 251–284. MR 867726, 10.1007/BF00251174
  • [15] Laurent Véron, Singular solutions of some nonlinear elliptic equations, Nonlinear Anal. 5 (1981), no. 3, 225–242. MR 607806, 10.1016/0362-546X(81)90028-6
  • [16] C. Yarur, Singularidades de ecuaciones de Schrödinger estacionarias, Tesis de Doctorado, Universidad Complutense de Madrid, 1984.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J60, 35A30, 35Q20, 81C05

Retrieve articles in all journals with MSC: 35J60, 35A30, 35Q20, 81C05

Additional Information

Keywords: Semilinear elliptic equations, Thomas-Fermi-Dirac-von Weizsäcker equations, uniqueness of positive solutions, spherical symmetry of solutions
Article copyright: © Copyright 1990 American Mathematical Society