Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Smooth great circle fibrations and an application to the topological Blaschke conjecture

Author: C. T. Yang
Journal: Trans. Amer. Math. Soc. 320 (1990), 507-524
MSC: Primary 55R25; Secondary 57R50
MathSciNet review: 1028766
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study great smooth circle fibrations of round spheres and Blaschke manifolds of the homotopy type of complex projective spaces.

References [Enhancements On Off] (What's this?)

  • [1] A. Besse, Manifolds all of whose geodesics are closed, Springer, 1978. MR 496885 (80c:53044)
  • [2] W. Browder and G. R. Livesay, Fixed point free involutions on homotopy spheres, Bull. Amer. Math. Soc. 73 (1967), 242-245. MR 0206965 (34:6781)
  • [3] H. Gluck, F. Warner, and C. T. Yang, Division algebras, fibrations of spheres by great spheres and the topological determination of space by the gross behavior of its geodesics, Duke Math. J. 50 (1983), 1041-1076. MR 726317 (85i:53047)
  • [4] J. Milnor, Morse theory, Princeton Univ. Press, Princeton, N.J., 1963. MR 0163331 (29:634)
  • [5] J. Milnor and J. D. Stasheff, Characteristic classes, Princeton Univ. Press, Princeton, N.J., 1974. MR 0440554 (55:13428)
  • [6] D. Montgomery and C. T. Yang, Free differentiable actions on homotopy spheres, Proc. Conf. on Transformation Groups, Springer, 1968, pp. 175-192. MR 0245042 (39:6354)
  • [7] -, Differentiable transformation groups and homotopy spheres, Michigan Math. J. 14 (1967), 33-46. MR 0217815 (36:904)
  • [8] H. Sato, On topological Blaschke conjecture. I, Geometry of Geodesics and Related Topics, Advanced Studies in Pure Math., vol. 3, Kinokuniya, Tokyo, 1984, pp. 231-238. MR 758656 (86c:53025a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55R25, 57R50

Retrieve articles in all journals with MSC: 55R25, 57R50

Additional Information

Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society