Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Iterated spinning and homology spheres


Author: Alexander I. Suciu
Journal: Trans. Amer. Math. Soc. 321 (1990), 145-157
MSC: Primary 57N65; Secondary 55Q52, 57Q45, 57R19
DOI: https://doi.org/10.1090/S0002-9947-1990-0987169-3
MathSciNet review: 987169
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a closed $ n$-manifold $ {M^n}$ and a tuple of positive integers $ P$, let $ {\sigma _P}M$ be the $ P$-spin of $ M$. If $ {M^n} \not\backsimeq{S^n}$ and $ P \ne Q$ (as unordered tuples), it is shown that $ {\sigma _P}M\not\backsimeq{\sigma _Q}M$ if either (1) $ {H_*}({M^n})\not\cong{H_*}({S^n})$, (2)$ {\pi _1}M$ finite, (3) $ M$ aspherical, or (4) $ n = 3$. Applications to the homotopy classification of homology spheres and knot exteriors are given.


References [Enhancements On Off] (What's this?)

  • [1] J. J. Andrews and D. W. Sumners, On higher-dimensional fibered knots, Trans. Amer. Math. Soc. 153 (1971), 415-426. MR 0271927 (42:6808)
  • [2] E. Artin, Zur Isotopie zweidimensionaler Flächen in $ {R_4}$, Abh. Math. Sem. Univ. Hamburg, 4 (1926), 174-177.
  • [3] S. E. Cappell, Superspinning and knot complements, Topology of Manifolds (Proc. Inst. Univ. of Georgia, Athens, 1969), Markham, Chicago, Il., 1970, pp. 358-383. MR 0276972 (43:2711)
  • [4] -, A splitting theorem for manifolds, Invent. Math. 33 (1976), 69-170. MR 0438359 (55:11274)
  • [5] D. B. A. Epstein, Linking spheres, Proc. Cambridge Philos. Soc. 56 (1960), 215-219. MR 0117740 (22:8514)
  • [6] C. Mc A. Gordon, Some higher-dimensional knots with the same homotopy groups, Quart. J. Math. Oxford 24 (1973), 411-422. MR 0326746 (48:5089)
  • [7] -, A note on spun knots, Proc. Amer. Math. Soc. 58 (1976), 361-362. MR 0413119 (54:1240)
  • [8] J. Hempel, $ 3$-manifolds, Princeton Univ. Press, Princeton, N.J., 1976. MR 0415619 (54:3702)
  • [9] I. Kaplansky, Fields and rings, Chicago Lectures in Mathematics, Chicago Univ. Press, Chicago, Il., 1969.
  • [10] S. P. Plotnick, Equivariant intersection forms, knots in $ {S^4}$, and rotations in $ 2$-spheres, Trans. Amer. Math. Soc. 296 (1986), 543-575. MR 846597 (87j:57012)
  • [11] S. P. Plotnick and A. I. Suciu, $ k$-invariants of knotted $ 2$-spheres, Comment. Math. Helv. 60 (1985), 54-84. MR 787662 (86i:57026)
  • [12] A. I. Suciu, Homology $ 4$-spheres with distinct $ k$-invariants, Topology Appl. 25 (1987), 103-110. MR 874982 (88f:57021)
  • [13] -, The oriented homotopy type of spun $ 3$-manifolds, Pacific J. Math. 131 (1988), 393-399. MR 922225 (89d:57020)
  • [14] D. W. Sumners, On an unlinking theorem, Proc. Cambridge Philos. Soc. 71 (1972), 1-4. MR 0290352 (44:7536)
  • [15] J. H. C. Whitehead, Combinatorial homotopy. I, Bull. Amer. Math. Soc. 55 (1949), 213-245. MR 0030759 (11:48b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57N65, 55Q52, 57Q45, 57R19

Retrieve articles in all journals with MSC: 57N65, 55Q52, 57Q45, 57R19


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0987169-3
Keywords: $ p$-spinning, homology sphere, homotopy type
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society