Unusually large gaps between consecutive primes

Authors:
Helmut Maier and Carl Pomerance

Journal:
Trans. Amer. Math. Soc. **322** (1990), 201-237

MSC:
Primary 11N05; Secondary 11N35

DOI:
https://doi.org/10.1090/S0002-9947-1990-0972703-X

MathSciNet review:
972703

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote the largest gap between consecutive primes below . In a series of papers from 1935 to 1963, Erdàs, Rankin, and Schànhage showed that

**[1]**N. G. de Bruijn,*On the number of positive integers ≤𝑥 and free of prime factors >𝑦*, Nederl. Acad. Wetensch. Proc. Ser. A.**54**(1951), 50–60. MR**0046375****[2]**H. Cramér,*On the order of magnitude of the difference between consecutive prime numbers*, Acta Arith.**2**(1936), 396-403.**[3]**P. Erdàs,*On the difference of consecutive primes*, Quart. J. Math. Oxford Ser.**6**(1935), 124-128.**[4]**P. X. Gallagher,*A large sieve density estimate near 𝜎=1*, Invent. Math.**11**(1970), 329–339. MR**0279049**, https://doi.org/10.1007/BF01403187**[5]**H. Halberstam and H.-E. Richert,*Sieve methods*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], London-New York, 1974. London Mathematical Society Monographs, No. 4. MR**0424730****[6]**Henryk Iwaniec,*On the problem of Jacobsthal*, Demonstratio Math.**11**(1978), no. 1, 225–231. MR**499895****[7]**A. F. Lavrik,*The number of 𝑘-twin primes lying on an interval of a given length.*, Soviet Math. Dokl.**2**(1961), 52–55. MR**0132055****[8]**S.-t. Lou and Q. Yao,*On gaps between consecutive primes*(to appear).**[9]**Hugh L. Montgomery,*Topics in multiplicative number theory*, Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin-New York, 1971. MR**0337847****[10]**H. L. Montgomery and R. C. Vaughan,*The exceptional set in Goldbach’s problem*, Acta Arith.**27**(1975), 353–370. Collection of articles in memory of Juriĭ Vladimirovič Linnik. MR**0374063**, https://doi.org/10.4064/aa-27-1-353-370**[11]**Karl Prachar,*Primzahlverteilung*, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957 (German). MR**0087685****[12]**R. A. Rankin,*The difference between consecutive prime numbers*, J. London Math. Soc.**13**(1938), 242-247.**[13]**R. A. Rankin,*The difference between consecutive prime numbers. V*, Proc. Edinburgh Math. Soc. (2)**13**(1962/1963), 331–332. MR**0160767**, https://doi.org/10.1017/S0013091500025633**[14]**Arnold Schönhage,*Eine Bemerkung zur Konstruktion grosser Primzahllücken*, Arch. Math. (Basel)**14**(1963), 29–30 (German). MR**0146154**, https://doi.org/10.1007/BF01234916**[15]**Daniel Shanks,*On maximal gaps between successive primes*, Math. Comp.**18**(1964), 646–651. MR**0167472**, https://doi.org/10.1090/S0025-5718-1964-0167472-8

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
11N05,
11N35

Retrieve articles in all journals with MSC: 11N05, 11N35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1990-0972703-X

Article copyright:
© Copyright 1990
American Mathematical Society