Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Interpretations of Euclidean geometry

Author: S. Świerczkowski
Journal: Trans. Amer. Math. Soc. 322 (1990), 315-328
MSC: Primary 03F25; Secondary 03C65, 51M99
MathSciNet review: 982234
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Following Tarski, we view $ n$-dimensional Euclidean geometry as a first-order theory $ {E_n}$ with an infinite set of axioms about the relations of betweenness (among points on a line) and equidistance (among pairs of points). We show that for $ k < n$, $ {E_n}$ does not admit a $ k$-dimensional interpretation in the theory RCF of real closed fields, and we deduce that $ {E_n}$ cannot be interpreted $ r$-dimensionally in $ {E_s}$, when $ r \cdot s < n$.

References [Enhancements On Off] (What's this?)

  • [B] M. Boffa, Elimination des quantificateurs en algèbre, Bull. Soc. Math. Belg. 32 (1980), 107-133. MR 670828 (84e:03041)
  • [C-K] C. C. Chang and H. J. Keisler, Model theory, North-Holland, Amsterdam, 1973.
  • [C] M. Coste, Ensembles semi-algébriques (Proc. Conf. on Semi-algebraic Geometry and Quadratic Forms, Rennes, 1981), Lecture Notes in Math., vol. 959, Springer-Verlag, Berlin and New York, 1982. MR 683131 (84e:14023)
  • [VdD1] L. van den Dries, Definable sets in 0-minimal structures, Lectures at University of Konstanz, spring 1985.
  • [VdD2] -, A generalization of the Tarski-Seidenberg theorem, and some nondefinability results, Bull. Amer. Math. Soc. 15 (1986), 189-193. MR 854552 (88b:03048)
  • [VdD3] -, Alfred Tarski's elimination theory for real closed fields, J. Symbolic Logic 53 (1988), 7-19. MR 929371 (89h:01040)
  • [E-S] S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, Princeton, N. J., 1952. MR 0050886 (14:398b)
  • [K-K] G. Kreisel and J. L. Krivine, Elements of mathematical logic, North-Holland, Amsterdam, 1967. MR 0219380 (36:2463)
  • [H] H. Hironaka, Triangulation of algebraic sets, Proc. Sympos. Pure Math., vol. 29, Amer. Math. Soc., Providence, R.I., 1975, pp. 165-185. MR 0374131 (51:10331)
  • [L] S. Lojasiewicz, Triangulation of semialgebraic sets, Ann. Sci. École Norm. Sup. (3) 18 (1964), 449-474. MR 0173265 (30:3478)
  • [M-V] R. Montague and R. L. Vaught, A note on theories with selectors, Fund. Math. 47 (1959), 243-247. MR 0124204 (23:A1521)
  • [M] J. Mycielski, A lattice of interpretability types of theories, J. Symbolic Logic 42 (1977), 297-305. MR 0505480 (58:21594)
  • [M-P-S] J. Mycielski, P. Pudlák, and A. S. Stern, A lattice of chapters of mathematics, Mem. Amer. Math. Soc. (to appear).
  • [Se] A. Seidenberg, A new decision method for elementary algebra, Ann. of Math. (2) 60 (1954), 365-374. MR 0063994 (16:209a)
  • [Sz] L. W. Szczerba, Dimensions of interpretations (abstract), J. Symbolic Logic 49 (1984), 677.
  • [T1] A. Tarski, Decision method for elementary algebra and geometry, 2nd ed., Berkeley, 1951. MR 0044472 (13:423a)
  • [T2] -, What is elementary geometry?, Symposium on the Axiomatic Method with Special Reference to Geometry and Physics, North-Holland, Amsterdam, 1959, pp. 16-29. MR 0106185 (21:4919)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 03F25, 03C65, 51M99

Retrieve articles in all journals with MSC: 03F25, 03C65, 51M99

Additional Information

Keywords: Interpretation, definable set, semialgebraic, Cartesian coordinates
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society