Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Basic dual homotopy invariants of Riemannian foliations


Author: Peter Y. H. Pang
Journal: Trans. Amer. Math. Soc. 322 (1990), 189-199
MSC: Primary 57R32; Secondary 55P62
DOI: https://doi.org/10.1090/S0002-9947-1990-1010888-X
MathSciNet review: 1010888
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we use the Sullivan minimal model construction to produce invariants for Riemannian foliations. Existence and vanishing results are proved for these invariants.


References [Enhancements On Off] (What's this?)

  • [B] R. Blumenthal, The base-like cohomology of a class of transversally homogeneous foliations, Bull. Sci. Math. (2) 104 (1980), 301-303. MR 592473 (82d:57012)
  • [F] E. Fedida, Feuilletages du plan, feuilletage de Lie, Lecture Notes in Math., vol. 652, Springer-Verlag, Berlin-New York, 1978, pp. 183-195. MR 505660 (80a:57012)
  • [GM] P. Griffiths and J. Morgan, Rational homotopy theory and differential forms, Progress in Math., vol. 16, Birkhäuser, Boston, Mass., 1981. MR 641551 (82m:55014)
  • [Ha1] S. Halperin, Lectures on minimal models, no. 111, Publ. Internes de l'U.E.R. de Math. Pures et Appl., Université de Lille, 1977.
  • [Ha2] -, Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc. 230 (1977), 173-199. MR 0461508 (57:1493)
  • [Hu] S. Hurder, Dual homotopy invariants of $ G$-foliations, Ph. D. thesis, University of Illinois at Urbana-Champaign, 1980; Topology 20 (1981), 365-387. MR 617372 (83a:57039)
  • [HK] S. Hurder and F. Kamber, Homotopy invariants of foliations, Topology Sympos., Siegen (1979), Lecture Notes in Math., vol. 788, Springer-Verlag, Berlin-New York, 1980, pp. 49-61. MR 585652 (82b:57020)
  • [KT] F. Kamber and Ph. Tondeur, Foliated bundles and characteristic classes, Lecture Notes in Math., vol. 493, Springer-Verlag, Berlin-New York, 1975. MR 0402773 (53:6587)
  • [LP] C. Lazarov and J. Pasternak, Secondary characteristic classes for Riemannian foliations, J. Differential Geom. 11 (1976), 365-385. MR 0445513 (56:3853)
  • [L] D. Lehmann, Structures de Maurer-Cartan et $ {\Gamma _\theta }$-structures. II: Espaces classificants, Astérisque 116 (1984), 134-148. MR 755167 (86e:57030)
  • [MN] J. Miller and J. Neisendorfer, Formal and coformal spaces, Illinois J. Math. 22 (1978), 565-580. MR 0500938 (58:18429)
  • [M] P. Molino, Géométrie globale des feuilletages riemanniens, Nederl. Akad. Wetensch. Proc. 85 (1982), 45-74. MR 653455 (84j:53043)
  • [Pa] P. Pang, Minimal models and Riemannian foliations, Ph. D. thesis, University of Illinois at Urbana-Champaign, 1988.
  • [P] J. Pasternak, Foliations and compact Lie group actions, Comment Math. Helv. 46 (1971), 467-477. MR 0300307 (45:9353)
  • [S] D. Sullivan, Infinitesimal computations in topology, Publ. Math. Inst. Hautes Etudes Sci. 47 (1977), 269-331. MR 0646078 (58:31119)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57R32, 55P62

Retrieve articles in all journals with MSC: 57R32, 55P62


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-1010888-X
Keywords: Riemannian foliations, minimal model, dual homotopy invariants, characteristic classes
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society