The crank of partitions mod and

Author:
Frank G. Garvan

Journal:
Trans. Amer. Math. Soc. **322** (1990), 79-94

MSC:
Primary 11P83; Secondary 05A17, 11P81

MathSciNet review:
1012520

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Recently new combinatorial interpretations of Ramanujan's partition congruences modulo , and were found. These were in terms of the crank. A refinement of the congruence modulo is proved. The number of partitions of with even crank is congruent to 0 modulo . The residue of the even crank modulo divides these partitions into five equal classes. Other relations for the crank modulo , and are also proved. The dissections of certain generating functions associated with these results are calculated. All of the results are proved by elementary methods.

**[A]**George E. Andrews,*The theory of partitions*, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. Encyclopedia of Mathematics and its Applications, Vol. 2. MR**0557013****[A-G1]**George E. Andrews and F. G. Garvan,*Ramanujan’s “lost” notebook. VI. The mock theta conjectures*, Adv. in Math.**73**(1989), no. 2, 242–255. MR**987276**, 10.1016/0001-8708(89)90070-4**[A-G2]**George E. Andrews and F. G. Garvan,*Dyson’s crank of a partition*, Bull. Amer. Math. Soc. (N.S.)**18**(1988), no. 2, 167–171. MR**929094**, 10.1090/S0273-0979-1988-15637-6**[A-S]**A. O. L. Atkin and P. Swinnerton-Dyer,*Some properties of partitions*, Proc. London Math. Soc. (3)**4**(1954), 84–106. MR**0060535****[Bia]**Anthony J. F. Biagioli,*A proof of some identities of Ramanujan using modular forms*, Glasgow Math. J.**31**(1989), no. 3, 271–295. MR**1021804**, 10.1017/S0017089500007850**[Bir]**B. J. Birch,*A look back at Ramanujan’s notebooks*, Math. Proc. Cambridge Philos. Soc.**78**(1975), 73–79. MR**0379372****[D1]**F. J. Dyson,*Some guesses in the theory of partitions*, Eureka (Cambridge)**8**(1944), 10-15.**[D2]**Freeman J. Dyson,*Missed opportunities*, Bull. Amer. Math. Soc.**78**(1972), 635–652. MR**0522147**, 10.1090/S0002-9904-1972-12971-9**[D3]**-,*A walk through Ramanujan's garden*, Ramanujan Revisted: Proc. of the Centenary Conference, Univ. of Illinois at Urbana-Champaign, June 1-5, 1987, Academic Press, San Diego, 1988.**[D4]**Freeman J. Dyson,*Mappings and symmetries of partitions*, J. Combin. Theory Ser. A**51**(1989), no. 2, 169–180. MR**1001259**, 10.1016/0097-3165(89)90043-5**[G1]**F. G. Garvan,*Some congruence properties of the partition function*, M. Sc. thesis, University of New South Wales, 1982.**[G2]**F. G. Garvan,*New combinatorial interpretations of Ramanujan’s partition congruences mod 5,7 and 11*, Trans. Amer. Math. Soc.**305**(1988), no. 1, 47–77. MR**920146**, 10.1090/S0002-9947-1988-0920146-8**[G3]**-,*Combinatorial interpretations of Ramanujan's partition congruences*, Ramanujan Revisted: Proc. of the Centenary Conference, Univ. of Illinois at Urbana-Champaign, June 1-5, 1987, Academic Press, San Diego, 1988.**[G-K-S]**Frank Garvan, Dongsu Kim, and Dennis Stanton,*Cranks and 𝑡-cores*, Invent. Math.**101**(1990), no. 1, 1–17. MR**1055707**, 10.1007/BF01231493**[G-S]**Frank Garvan and Dennis Stanton,*Sieved partition functions and 𝑞-binomial coefficients*, Math. Comp.**55**(1990), no. 191, 299–311. MR**1023761**, 10.1090/S0025-5718-1990-1023761-1**[H-W]**G. H. Hardy and E. M. Wright,*An Introduction to the theory of numbers*, Oxford Univ. Press, London, 1968.**[Hic1]**Dean Hickerson,*A proof of the mock theta conjectures*, Invent. Math.**94**(1988), no. 3, 639–660. MR**969247**, 10.1007/BF01394279**[Hic2]**Dean Hickerson,*On the seventh order mock theta functions*, Invent. Math.**94**(1988), no. 3, 661–677. MR**969248**, 10.1007/BF01394280**[Hir1]**M. D. Hirschhorn,*A simple proof of an identity of Ramanujan*, J. Austral. Math. Soc. Ser. A**34**(1983), no. 1, 31–35. MR**683175****[Hir2]**Michael D. Hirschhorn,*A generalisation of Winquist’s identity and a conjecture of Ramanujan*, J. Indian Math. Soc. (N.S.)**51**(1987), 49–55 (1988). MR**988308****[Hir3]**M. D. Hirschhorn,*A birthday present for Ramanujan*, Amer. Math. Monthly**97**(1990), no. 5, 398–400. MR**1048912**, 10.2307/2324390**[Hir4]**-, private communication.**[K-F]**F. Klein and R. Fricke,*Vorlesungen über die Theorie der elliptischen Modulfunktionen*, Vol. 2, Teubner, Leipzig, 1892.**[M]**I. G. Macdonald,*Affine root systems and Dedekind’s 𝜂-function*, Invent. Math.**15**(1972), 91–143. MR**0357528****[Ra1]**S. Ramanujan,*Some properties of*,*the number of partitions of*, Paper of Collected Papers of S. Ramanujan, Cambridge Univ. Press, London and New York, 1927; reprinted: Chelsea, New York, 1962.**[Ra2]**Srinivasa Ramanujan,*The lost notebook and other unpublished papers*, Springer-Verlag, Berlin; Narosa Publishing House, New Delhi, 1988. With an introduction by George E. Andrews. MR**947735****[Rø]**Ø. Rødseth,*Dissections of the generating functions of**and*, Univ. Bergen Årb. Naturv. Serie 1969, No 13.**[St1]**Dennis Stanton,*Sign variations of the Macdonald identities*, SIAM J. Math. Anal.**17**(1986), no. 6, 1454–1460. MR**860926**, 10.1137/0517103**[St2]**I. G. Macdonald,*An elementary proof of a 𝑞-binomial identity*, 𝑞-series and partitions (Minneapolis, MN, 1988) IMA Vol. Math. Appl., vol. 18, Springer, New York, 1989, pp. 73–75. MR**1019844**, 10.1007/978-1-4684-0637-5_7**[Wa]**G. N. Watson,*Proof of certain identities in combinatory analysis*, J. Indian Math. Soc.**20**(1933), 57-69.**[Wi]**Lasse Winquist,*An elementary proof of 𝑝(11𝑚+6)≡0(𝑚𝑜𝑑11)*, J. Combinatorial Theory**6**(1969), 56–59. MR**0236136**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
11P83,
05A17,
11P81

Retrieve articles in all journals with MSC: 11P83, 05A17, 11P81

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1990-1012520-8

Keywords:
Congruences,
crank,
dissections,
generating functions,
Macdonald identities,
modular functions,
partitions,
quadratic forms,
symmetry group,
theta functions,
Ramanujan

Article copyright:
© Copyright 1990
American Mathematical Society