Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Tauberian theorems for the Laplace-Stieltjes transform


Author: C. J. K. Batty
Journal: Trans. Amer. Math. Soc. 322 (1990), 783-804
MSC: Primary 44A10; Secondary 30B50, 40E05, 47A60
MathSciNet review: 1013326
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \alpha :[0,\infty ) \to {\mathbf{C}}$ be a function of locally bounded variation, with $ \alpha (0) = 0$, whose Laplace-Stieltjes transform $ g(z) = \int_0^\infty {{e^{ - zt}}d\alpha (t)} $ is absolutely convergent for $ \operatorname{Re} z > 0$. Let $ E$ be the singular set of $ g$ in $ i{\mathbf{R}}$, and suppose that $ 0 \notin E$. Various estimates for $ \lim {\sup _{t \to \infty }}\vert\alpha (t) - g(0)\vert$ are obtained. In particular, $ \alpha (t) \to g(0)$ as $ t \to \infty $ if

\begin{displaymath}\begin{gathered}({\text{i)}}\quad E\,{\text{is null,}} \hfill... ...vert\alpha (s) - \alpha (t)\vert = 0. \hfill \\ \end{gathered} \end{displaymath}

This result contains Tauberian theorems for Laplace transforms, power series, and Dirichlet series.

References [Enhancements On Off] (What's this?)

  • [1] G. R. Allan, A. G. O'Farrell, and T. J. Ransford, A Tauberian theorem arising in operator theory, Bull. London Math. Soc. 19 (1987), 537-545. MR 915430 (89c:47003)
  • [2] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988), 837-852. MR 933321 (89g:47053)
  • [3] A. E. Ingham, On Wiener's method in Tauberian theorems, Proc. London Math. Soc. (2) 38 (1935), 458-480.
  • [4] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313-328. MR 859138 (88e:47006)
  • [5] J. Korevaar, On Newman's quick way to the prime number theorem, Math. Intelligencer 4 (1982), 108-115. MR 684025 (84b:10063)
  • [6] Y. I. Lyubich and Vu Quoc Phong, Asymptotic stability of linear differential equations in Banach spaces, Studia Math. 88 (1988), 37-42. MR 932004 (89e:47062)
  • [7] D. J. Newman, Simple analytic proof of the prime number theorem, Amer. Math. Monthly 87 (1980), 693-696. MR 602825 (82h:10056)
  • [8] T. J. Ransford, Some quantitative Tauberian theorems for power series, Bull. London Math. Soc. 20 (1988), 37-44. MR 916072 (89g:30005)
  • [9] E. C. Titchmarsh, The theory of functions, Oxford Univ. Press, Oxford, 1932.
  • [10] D. V. Widder, An introduction to transform theory, Academic Press, New York, 1971.
  • [11] D. Zagier, Short proof of the prime number theorem, unpublished manuscript.
  • [12] C. J. K. Batty and Vu Quoc Phong, Stability of individual elements under one-parameter semigroups, Trans. Amer. Math. Soc. 322 (1990), 805-818. MR 1022866 (91c:47072)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 44A10, 30B50, 40E05, 47A60

Retrieve articles in all journals with MSC: 44A10, 30B50, 40E05, 47A60


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1990-1013326-6
Keywords: Tauberian theorem, Laplace-Stieltjes transform, Laplace transform, power series, Dirichlet series, $ {C_0}$-semigroup
Article copyright: © Copyright 1990 American Mathematical Society