Tauberian theorems for the Laplace-Stieltjes transform

Author:
C. J. K. Batty

Journal:
Trans. Amer. Math. Soc. **322** (1990), 783-804

MSC:
Primary 44A10; Secondary 30B50, 40E05, 47A60

DOI:
https://doi.org/10.1090/S0002-9947-1990-1013326-6

MathSciNet review:
1013326

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a function of locally bounded variation, with , whose Laplace-Stieltjes transform is absolutely convergent for . Let be the singular set of in , and suppose that . Various estimates for are obtained. In particular, as if

**[1]**G. R. Allan, A. G. O'Farrell, and T. J. Ransford,*A Tauberian theorem arising in operator theory*, Bull. London Math. Soc.**19**(1987), 537-545. MR**915430 (89c:47003)****[2]**W. Arendt and C. J. K. Batty,*Tauberian theorems and stability of one-parameter semigroups*, Trans. Amer. Math. Soc.**306**(1988), 837-852. MR**933321 (89g:47053)****[3]**A. E. Ingham,*On Wiener's method in Tauberian theorems*, Proc. London Math. Soc. (2)**38**(1935), 458-480.**[4]**Y. Katznelson and L. Tzafriri,*On power bounded operators*, J. Funct. Anal.**68**(1986), 313-328. MR**859138 (88e:47006)****[5]**J. Korevaar,*On Newman's quick way to the prime number theorem*, Math. Intelligencer**4**(1982), 108-115. MR**684025 (84b:10063)****[6]**Y. I. Lyubich and Vu Quoc Phong,*Asymptotic stability of linear differential equations in Banach spaces*, Studia Math.**88**(1988), 37-42. MR**932004 (89e:47062)****[7]**D. J. Newman,*Simple analytic proof of the prime number theorem*, Amer. Math. Monthly**87**(1980), 693-696. MR**602825 (82h:10056)****[8]**T. J. Ransford,*Some quantitative Tauberian theorems for power series*, Bull. London Math. Soc.**20**(1988), 37-44. MR**916072 (89g:30005)****[9]**E. C. Titchmarsh,*The theory of functions*, Oxford Univ. Press, Oxford, 1932.**[10]**D. V. Widder,*An introduction to transform theory*, Academic Press, New York, 1971.**[11]**D. Zagier,*Short proof of the prime number theorem*, unpublished manuscript.**[12]**C. J. K. Batty and Vu Quoc Phong,*Stability of individual elements under one-parameter semigroups*, Trans. Amer. Math. Soc.**322**(1990), 805-818. MR**1022866 (91c:47072)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
44A10,
30B50,
40E05,
47A60

Retrieve articles in all journals with MSC: 44A10, 30B50, 40E05, 47A60

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1990-1013326-6

Keywords:
Tauberian theorem,
Laplace-Stieltjes transform,
Laplace transform,
power series,
Dirichlet series,
-semigroup

Article copyright:
© Copyright 1990
American Mathematical Society