Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Inner functions and cyclic vectors in the Bloch space


Authors: J. M. Anderson, J. L. Fernández and A. L. Shields
Journal: Trans. Amer. Math. Soc. 323 (1991), 429-448
MSC: Primary 46J15; Secondary 30H05, 46E15, 47B38
MathSciNet review: 979966
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we construct a singular inner function whose polynomial multiples are dense in the little Bloch space $ {\mathcal{B}_0}$. To do this we construct a singular measure on the unit circle with "best possible" control of both the first and second differences.


References [Enhancements On Off] (What's this?)

  • [An85] J. M. Anderson, Bloch functions: the basic theory, Operators and Function Theory (S. C. Power, ed.), Reidel, Dordrecht, 1985, pp. 1-17. MR 87h:30072 MR 810441 (87h:30072)
  • [ABB77] J. M. Anderson, K. Barth, and D. Brannan, Research problems in complex analysis, Bull. London Math. Soc. 9 (1977), 129-162. MR 55 #12899 MR 0440018 (55:12899)
  • [ACP74] J. M. Anderson, J. Clunie, and C. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 20 (1974), 12-37. MR 50 #13536 MR 0361090 (50:13536)
  • [Be49] S. N. Bernstein, On majorants of finite or quasi-finite growth, Dokl. Akad. Nauk SSSR 65 (1949), 117-120. (Russian) MR 11, 23 MR 0030613 (11:23a)
  • [BS84] L. Brown and A. L. Shields, Cyclic vectors in the Dirichlet space, Trans. Amer. Math. Soc. 285 (1984), 269-304. MR 86d:30079 MR 748841 (86d:30079)
  • [Bu73] D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probab. 1 (1973), 19-42. MR 51 #1944 MR 0365692 (51:1944)
  • [Db53] J. L. Doob, Statistic processes, Wiley, New York, 1953. MR 15, 445 MR 0058896 (15:445b)
  • [DSS66] P. L. Duren, H. S. Shapiro, and A. L. Shields, Singular measures and domains not of Smirnov type, Duke Math. J. 33 (1966), 247-254. MR 33 #7506 MR 0199359 (33:7506)
  • [Hk37] P. Hartman and R. Kerschner, The structure of monotone functions, Amer. J. Math. 59 (1937), 809-822. MR 1507284
  • [Ka69] J.-P. Kahane, Trois notes sur les ensembles parfaits linéaires, Enseign. Math. 15 (1969), 185-192. MR 39 #7040 MR 0245734 (39:7040)
  • [Ko81] B. I. Korenblum, Cyclic elements in some spaces of analytic functions, Bull. Amer. Math. Soc. (N.S.) 5 (1981), 317-318. MR 82j:30074 MR 628662 (82j:30074)
  • [PSW67] G. Piranian, A. L. Shields, and J. H. Wells, Bounded analytic functions and absolutely continuous measures, Proc. Amer. Math. Soc. 18 (1967), 818-826. MR 35 #5911 MR 0215067 (35:5911)
  • [R85] J. W. Roberts, Cyclic inner functions in Bergman spaces and weak outer functions in $ {H^p}$, $ 0 < p < 1$, Illinois J. Math. 29 (1985), 25-38. MR 86c:30069 MR 769756 (86c:30069)
  • [RS66] L. A. Rubel and A. L. Shields, The space of bounded analytic functions on a region, Ann. Inst. Fourier (Grenoble) 16 (1966), 235-277. RM 33 #6440 MR 0198281 (33:6440)
  • [RS70] -, The second duals of certain spaces of analytic functions, J. Austral. Math. Soc. 11 (1970), 276-280. MR 43 #2484 MR 0276744 (43:2484)
  • [hS64] H. S. Shapiro, Weakly invertible elements in certain function spaces and generators in $ {l^1}$, Michigan Math. J. 11 (1964), 161-165. MR 29 #3620 MR 0166343 (29:3620)
  • [hS68] -, Monotonic singular functions of high smoothness, Michigan Math. J. 15 (1968), 265-275. MR 38 #1219 MR 0232896 (38:1219)
  • [jS80] Joel Shapiro, Cyclic inner functions in Bergman spaces, preprint, 1980 (not for publication).
  • [S85] A. L. Shields, Cyclic vectors in Banach spaces of analytic functions, Operators and Function Theory (S. C. Power, ed.), Reidel, Dordrecht, 1985, pp. 315-349. MR 87c:47048 MR 810450 (87c:47048)
  • [SW78] A. L. Shields and D. L. Williams, Bounded projections, duality, and multipliers in spaces of harmonic functions, J. Reine Angew. Math. 299/300 (1978), 256-279. MR 58 #7053 MR 0487415 (58:7053)
  • [SW82] -, Bounded projections and the growth of harmonic conjugates in the unit disc, Michigan Math. J. 29 (1982), 3-25. MR 83h:30063 MR 646368 (83h:30063)
  • [SZ63] E. M. Stein and A. Zygmund, On the differentiability of functions, Studia Math. 23 (1963/64), 247-283. (Note: apparently this paper was never reviewed in the Mathematical Reviews.) MR 0158955 (28:2176)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46J15, 30H05, 46E15, 47B38

Retrieve articles in all journals with MSC: 46J15, 30H05, 46E15, 47B38


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-0979966-6
Article copyright: © Copyright 1991 American Mathematical Society