Generating modules efficiently over noncommutative Noetherian rings

Author:
S. C. Coutinho

Journal:
Trans. Amer. Math. Soc. **323** (1991), 843-856

MSC:
Primary 16P40; Secondary 16E20, 16P60, 19A13, 19A15

DOI:
https://doi.org/10.1090/S0002-9947-1991-0986688-4

MathSciNet review:
986688

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Forster-Swan Theorem gives an upper bound on the number of generators of a module over a commutative ring in terms of local data. Stafford showed that this theorem could be generalized to arbitrary right and left noetherian rings. In this paper a similar result is proved for right noetherian rings with finite Krull dimension. A new dimension function--the basic dimension--is the main tool used in the proof of this result.

**[1]**S. C. Coutinho,*Generating modules efficiently over non-commutative noetherian rings*, PhD thesis, Leeds University, 1986.**[2]**S. C. Coutinho,*Basic element theory of noncommutative Noetherian rings*, J. Algebra**144**(1991), no. 1, 24–42. MR**1136893**, https://doi.org/10.1016/0021-8693(91)90125-R**[3]**C. Dean and J. T. Stafford,*A nonembeddable Noetherian ring*, J. Algebra**115**(1988), no. 1, 175–181. MR**937608**, https://doi.org/10.1016/0021-8693(88)90289-X**[4]**David Eisenbud and E. Graham Evans Jr.,*Generating modules efficiently: theorems from algebraic 𝐾-theory*, J. Algebra**27**(1973), 278–305. MR**0327742**, https://doi.org/10.1016/0021-8693(73)90106-3**[5]**Robert Gordon and J. C. Robson,*Krull dimension*, American Mathematical Society, Providence, R.I., 1973. Memoirs of the American Mathematical Society, No. 133. MR**0352177****[6]**Nathan Jacobson,*Basic algebra. II*, W. H. Freeman and Co., San Francisco, Calif., 1980. MR**571884****[7]**Arun Vinayak Jategaonkar,*Jacobson’s conjecture and modules over fully bounded Noetherian rings*, J. Algebra**30**(1974), 103–121. MR**0352170**, https://doi.org/10.1016/0021-8693(74)90195-1**[8]**Ernst Kunz,*Introduction to commutative algebra and algebraic geometry*, Birkhäuser Boston, Inc., Boston, MA, 1985. Translated from the German by Michael Ackerman; With a preface by David Mumford. MR**789602****[9]**J. C. McConnell and J. C. Robson,*Noncommutative Noetherian rings*, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR**934572****[10]**Louis H. Rowen,*Ring theory. Vol. I*, Pure and Applied Mathematics, vol. 127, Academic Press, Inc., Boston, MA, 1988. MR**940245****[11]**J. T. Stafford,*Generating modules efficiently: algebraic 𝐾-theory for noncommutative Noetherian rings*, J. Algebra**69**(1981), no. 2, 312–346. MR**617082**, https://doi.org/10.1016/0021-8693(81)90208-8**[12]**J. T. Stafford,*Generating modules efficiently over noncommutative rings*, Paul Dubreil and Marie-Paule Malliavin Algebra Seminar, 34th Year (Paris, 1981) Lecture Notes in Math., vol. 924, Springer, Berlin-New York, 1982, pp. 72–88. MR**662253****[13]**J. T. Stafford,*Nonholonomic modules over Weyl algebras and enveloping algebras*, Invent. Math.**79**(1985), no. 3, 619–638. MR**782240**, https://doi.org/10.1007/BF01388528**[14]**R. B. Warfield Jr.,*The number of generators of a module over a fully bounded ring*, J. Algebra**66**(1980), no. 2, 425–447. MR**593603**, https://doi.org/10.1016/0021-8693(80)90096-4

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
16P40,
16E20,
16P60,
19A13,
19A15

Retrieve articles in all journals with MSC: 16P40, 16E20, 16P60, 19A13, 19A15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1991-0986688-4

Article copyright:
© Copyright 1991
American Mathematical Society