Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the homology of $ {\rm SU}(n)$ instantons


Authors: Charles P. Boyer, Benjamin M. Mann and Daniel Waggoner
Journal: Trans. Amer. Math. Soc. 323 (1991), 529-561
MSC: Primary 58D27; Secondary 53C07, 55R40
DOI: https://doi.org/10.1090/S0002-9947-1991-1034658-2
MathSciNet review: 1034658
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the homology of the moduli spaces of instantons associated to principal $ {\mathbf{SU}}(n)$ bundles over the four-sphere. This is accomplished by exploiting an "iterated loop space" structure implicit in the disjoint union of all moduli spaces associated to a fixed $ {\mathbf{SU}}(n)$ with arbitrary instanton number and relating these spaces to the known homology structure of the four-fold loop space on $ B{\mathbf{SU}}(n)$.


References [Enhancements On Off] (What's this?)

  • [1] S. Araki and T. Kudo, Topology of $ {H_n}$-spaces and $ H$-squaring operations, Mem. Fac. Sci. Kyusyu Univ. Ser. A 10 (1956), 85-120. MR 0087948 (19:442b)
  • [2] M. F. Atiyah. Geometry of Yang-Mills fields, Scuola Norm. Sup. Pisa, Pisa, 1979. MR 554924 (81a:81047)
  • [3] M. F. Atiyah, V. G. Drinfeld, N. J. Hitchin, and Y. I. Manin, Construction of instantons, Phys. Lett. A 65 (1978), 185-187. MR 598562 (82g:81049)
  • [4] M. F. Atiyah, N. J. Hitchin, and I. Singer, Self-duality in four dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425-461. MR 506229 (80d:53023)
  • [5] M. F. Atiyah and J. D. Jones, Topological aspects of Yang-Mills theory, Comm. Math. Phys. 61 (1978), 97-118. MR 503187 (80j:58021)
  • [6] J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Springer-Verlag, 1973. MR 0420609 (54:8623a)
  • [7] C. P. Boyer and B. M. Mann, Homology operations on instantons, J. Differential Geom. 28 (1988), 423-465. MR 965223 (89m:58044)
  • [8] -, Instantons and homotopy, Homotopy Theory (Arcata), Lecture Notes in Math., vol. 1370, Springer-Verlag, 1989. MR 1000369 (90f:58031)
  • [9] W. Browder, Homology operations and loop spaces, Illinois J. Math. 4 (1960), 347-357. MR 0120646 (22:11395)
  • [10] F. R. Cohen, T. J. Lada and J. P. May, The homology of iterated loop spaces, Springer-Verlag, 1976. MR 0436146 (55:9096)
  • [11] S. K. Donaldson, Instantons and geometric invariant theory, Comm. Math. Phys. 93 (1984), 453-460. MR 763753 (86m:32043)
  • [12] E. Dyer and R. K. Lashof, Homology of iterated loop spaces, Amer. J. Math. 84 (1962), 35-88. MR 0141112 (25:4523)
  • [13] D. Freed and K. K. Uhlenbeck, Instantons and four-manifolds, Springer-Verlag, 1984. MR 757358 (86c:57031)
  • [14] D. Groisser and T. H. Parker, The geometry of the Yang-Mills moduli space for definite manifolds, J. Differential Geometry 29 (1989), 499-544. MR 992329 (90f:58021)
  • [15] N. J. Hitchin, A. Karlhede, U. Lindström, and M. Roček, Hyperkähler metrics and supersymmetry, Comm. Math. Phys. 108 (1987), 535-589. MR 877637 (88g:53048)
  • [16] J. Hurtubise, Instantons and jumping lines, Comm. Math. Phys. 105 (1986), 107-122. MR 847130 (87g:14009)
  • [17] H. B. Lawson, The theory of gauge fields in four dimensions, Amer. Math. Soc., Providence, R.I., 1985. MR 799712 (87d:58044)
  • [18] J. P. May, The geometry of iterated loop spaces, Springer-Verlag, 1972. MR 0420610 (54:8623b)
  • [19] R. J. Milgram, Iterated loop spaces, Ann. of Math. (2) 84 (1966), 386-403. MR 0206951 (34:6767)
  • [20] -, The mod $ 2$ spherical characteristic classes, Ann. of Math. (2) 92 (1970), 238-261. MR 0263100 (41:7705)
  • [21] J. Milnor, Morse theory, Princeton Univ. Press, Princeton, N. J., 1963. MR 0163331 (29:634)
  • [22] M. S. Narasimhan and S. Ramanan, Existence of universal connections, Amer. J. Math. 83 (1961), 563-572. MR 0133772 (24:A3597)
  • [23] G. Segal, Configuration spaces and iterated loop-spaces, Invent. Math. 21 (1973), 213-221. MR 0331377 (48:9710)
  • [24] C. H. Taubes, Stability in Yang-Mills theories, Comm. Math. Phys. 91 (1983), 235-265. MR 723549 (86b:58027)
  • [25] -, Path-connected Yang-Mills moduli spaces, J. Differential Geom. 19 (1984), 337-392. MR 755230 (85m:58049)
  • [26] -, The stable topology of self-dual moduli spaces, J. Differential Geom. 29 (1989), 163-230. MR 978084 (90f:58023)
  • [27] D. Waggoner, Loop spaces and the classical unitary groups, Ph.D. Thesis, University of Kentucky, 1985.
  • [28] G. W. Whitehead, Elements of homotopy theory, Springer-Verlag, 1978. MR 516508 (80b:55001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58D27, 53C07, 55R40

Retrieve articles in all journals with MSC: 58D27, 53C07, 55R40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1034658-2
Keywords: Instantons, iterated loop spaces, homology operations
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society