Generalized iteration of forcing

Authors:
M. Groszek and T. Jech

Journal:
Trans. Amer. Math. Soc. **324** (1991), 1-26

MSC:
Primary 03E40; Secondary 03E35, 03E50

DOI:
https://doi.org/10.1090/S0002-9947-1991-0946221-X

MathSciNet review:
946221

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Generalized iteration extends the usual notion of iterated forcing from iterating along an ordinal to iterating along any partially ordered set. We consider a class of forcings called perfect tree forcing. The class includes Axiom A forcings with a finite splitting property, such as Cohen, Laver, Mathias, Miller, Prikry-Silver, and Sacks forcings. If is a perfect tree forcing, there is a decomposition such that is countably closed, has the countable chain condition, and adds a -generic set.

**Theorem**. *The mixed-support generalized iteration of perfect tree forcing decompositions along any well-founded partial order preserves* .

**Theorem**. *If* *is consistent, so is* *is arbitrarily large + whenever* *is a perfect tree forcing and* *is a collection of* *dense subsets of* , *there is a* *-generic filter on* .

**[1]**James E. Baumgartner,*Iterated forcing*, Surveys in set theory, London Math. Soc. Lecture Note Ser., vol. 87, Cambridge Univ. Press, Cambridge, 1983, pp. 1–59. MR**823775**, https://doi.org/10.1017/CBO9780511758867.002**[2]**James E. Baumgartner and Richard Laver,*Iterated perfect-set forcing*, Ann. Math. Logic**17**(1979), no. 3, 271–288. MR**556894**, https://doi.org/10.1016/0003-4843(79)90010-X**[3]**Paul J. Cohen,*Set theory and the continuum hypothesis*, W. A. Benjamin, Inc., New York-Amsterdam, 1966. MR**0232676****[4]**Keith J. Devlin,*The Yorkshireman’s guide to proper forcing*, Surveys in set theory, London Math. Soc. Lecture Note Ser., vol. 87, Cambridge Univ. Press, Cambridge, 1983, pp. 60–115. MR**823776**, https://doi.org/10.1017/CBO9780511758867.003**[5]**William B. Easton,*Powers of regular cardinals*, Ann. Math. Logic**1**(1970), 139–178. MR**0269497**, https://doi.org/10.1016/0003-4843(70)90012-4**[6]**Serge Grigorieff,*Combinatorics on ideals and forcing*, Ann. Math. Logic**3**(1971), no. 4, 363–394. MR**0297560**, https://doi.org/10.1016/0003-4843(71)90011-8**[7]**M. Groszek,*as an initial segment of the degrees of constructibility*.**[8]**M. Groszek and R. Laver,*Finite groups of**-conjugates*.**[9]**Thomas Jech,*Set theory*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. Pure and Applied Mathematics. MR**506523****[10]**Ronald Jensen,*Definable sets of minimal degree*, Mathematical logic and foundations of set theory (Proc. Internat. Colloq., Jerusalem, 1968) North-Holland, Amsterdam, 1970, pp. 122–128. MR**0306002****[11]**R. B. Jensen and R. M. Solovay,*Some applications of almost disjoint sets*, Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968) North-Holland, Amsterdam, 1970, pp. 84–104. MR**0289291****[12]**K. Kunen,*Set theory*, Stud. Logic Foundations Math., vol. 102, North-Holland, Amsterdam, 1980.**[13]**Richard Laver,*On the consistency of Borel’s conjecture*, Acta Math.**137**(1976), no. 3-4, 151–169. MR**0422027**, https://doi.org/10.1007/BF02392416**[14]**D. A. Martin and R. M. Solovay,*Internal Cohen extensions*, Ann. Math. Logic**2**(1970), no. 2, 143–178. MR**0270904**, https://doi.org/10.1016/0003-4843(70)90009-4**[15]**A. R. D. Mathias,*Happy families*, Ann. Math. Logic**12**(1977), no. 1, 59–111. MR**0491197**, https://doi.org/10.1016/0003-4843(77)90006-7**[16]**A. Miller,*Rational perfect set forcing*.**[17]**Gerald E. Sacks,*Forcing with perfect closed sets*, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 331–355. MR**0276079****[18]**Saharon Shelah,*Proper forcing*, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR**675955****[19]**R. M. Solovay and S. Tennenbaum,*Iterated Cohen extensions and Souslin’s problem*, Ann. of Math. (2)**94**(1971), 201–245. MR**0294139**, https://doi.org/10.2307/1970860**[20]**W. H. Woodin,*The consistency of Borel's conjecture with large continuum*.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
03E40,
03E35,
03E50

Retrieve articles in all journals with MSC: 03E40, 03E35, 03E50

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1991-0946221-X

Article copyright:
© Copyright 1991
American Mathematical Society