Generalized iteration of forcing

Authors:
M. Groszek and T. Jech

Journal:
Trans. Amer. Math. Soc. **324** (1991), 1-26

MSC:
Primary 03E40; Secondary 03E35, 03E50

DOI:
https://doi.org/10.1090/S0002-9947-1991-0946221-X

MathSciNet review:
946221

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Generalized iteration extends the usual notion of iterated forcing from iterating along an ordinal to iterating along any partially ordered set. We consider a class of forcings called perfect tree forcing. The class includes Axiom A forcings with a finite splitting property, such as Cohen, Laver, Mathias, Miller, Prikry-Silver, and Sacks forcings. If is a perfect tree forcing, there is a decomposition such that is countably closed, has the countable chain condition, and adds a -generic set.

**Theorem**. *The mixed-support generalized iteration of perfect tree forcing decompositions along any well-founded partial order preserves* .

**Theorem**. *If* *is consistent, so is* *is arbitrarily large + whenever* *is a perfect tree forcing and* *is a collection of* *dense subsets of* , *there is a* *-generic filter on* .

**[1]**J. Baumgartner,*Iterated forcing*, Surveys in Set Theory (A.R.D. Mathias, ed.), London Math. Soc. Lecture Note Ser. 87, Cambridge University Press, Cambridge, 1983, pp. 1-59. MR**823775 (87c:03099)****[2]**J. Baumgartner and R. Laver,*Iterated perfect set forcing*, Ann. Math. Logic**17**(1979), 271-288. MR**556894 (81a:03050)****[3]**P. Cohen,*Set theory and the continuum hypothesis*, Benjamin, New York, 1966. MR**0232676 (38:999)****[4]**K. Devlin,*The Yorkshireman's guide to proper forcing*, Surveys in Set Theory (A.R.D. Mathias, ed.), London Math. Soc. Lecture Note Ser. 87, Cambridge University Press, Cambridge, 1983, pp. 60-115. MR**823776 (87h:03081)****[5]**E. Easton,*Powers of regular cardinals*, Ann. Math. Logic**1**(1970), 139-178. MR**0269497 (42:4392)****[6]**S. Grigorieff,*Combinatorics on ideals and forcing*, Ann. Math. Logic**3**(1971), 363-394. MR**0297560 (45:6614)****[7]**M. Groszek,*as an initial segment of the degrees of constructibility*.**[8]**M. Groszek and R. Laver,*Finite groups of**-conjugates*.**[9]**T. Jech,*Set theory*, Academic Press, New York, 1978. MR**506523 (80a:03062)****[10]**R. Jensen,*Definable sets of minimal degree*, Math. Logic and Foundations of Set Theory (Y. Bar-Hillel, ed.), North-Holland, Amsterdam, 1970, pp. 122-218. MR**0306002 (46:5130)****[11]**R. Jensen and R. Solovay,*Some applications of almost disjoint sets*, Math. Logic and Foundations of Set Theory (Y. Bar-Hillel, ed.), North-Holland, Amsterdam, 1970, pp. 84-104. MR**0289291 (44:6482)****[12]**K. Kunen,*Set theory*, Stud. Logic Foundations Math., vol. 102, North-Holland, Amsterdam, 1980.**[13]**R. Laver,*On the consistency of Borel's conjecture*, Acta Math.**137**(1976), 151-169. MR**0422027 (54:10019)****[14]**D. Martin and R. Solovay,*Internal Cohen extensions*, Ann. Math. Logic**2**(1970), 143-178 MR**0270904 (42:5787)****[15]**A. Mathias,*Happy families*, Ann. Math. Logic**12**(1977), 59-111. MR**0491197 (58:10462)****[16]**A. Miller,*Rational perfect set forcing*.**[17]**G. Sacks,*Forcing with perfect closed sets*, Axiomatic Set Theory (D. Scott, ed.), Proc. Sympos. Pure Math., vol. 13, part 1, Amer. Math. Soc., Providence, R.I., 1971, pp. 331-355. MR**0276079 (43:1827)****[18]**S. Shelah,*Proper forcing*, Lecture Notes in Math., vol. 940, Springer-Verlag, Berlin, 1982. MR**675955 (84h:03002)****[19]**R. Solovay and S. Tennenbaum,*Iterated Cohen extensions and Souslin's problem*, Ann. of Math. (2)**94**(1971), 201-245. MR**0294139 (45:3212)****[20]**W. H. Woodin,*The consistency of Borel's conjecture with large continuum*.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
03E40,
03E35,
03E50

Retrieve articles in all journals with MSC: 03E40, 03E35, 03E50

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1991-0946221-X

Article copyright:
© Copyright 1991
American Mathematical Society