Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Stable patterns in a viscous diffusion equation

Authors: A. Novick-Cohen and R. L. Pego
Journal: Trans. Amer. Math. Soc. 324 (1991), 331-351
MSC: Primary 35K70; Secondary 35K55, 80A15
MathSciNet review: 1015926
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a pseudoparabolic regularization of a forward-backward nonlinear diffusion equation $ {u_t} = \Delta (f(u) + \nu {u_t})$, motivated by the problem of phase separation in a viscous binary mixture. The function $ f$ is non-monotone, so there are discontinuous steady state solutions corresponding to arbitrary arrangements of phases. We find that any bounded measurable steady state solution $ u(x)$ satisfying $ f(u) = {\text{constant}}$, $ f'(u(x)) > 0$ a.e. is dynamically stable to perturbations in the sense of convergence in measure. In particular, smooth solutions may achieve discontinuous asymptotic states. Furthermore, stable states need not correspond to absolute minimizers of free energy, thus violating Gibbs' principle of stability for phase mixtures.

References [Enhancements On Off] (What's this?)

  • [A] E. C. Aifantis, On the problem of diffusion in solids, Acta Mech. 37 (1980), 265-296. MR 586062 (81g:80003)
  • [AB] G. Andrews and J. M. Ball, Asymptotic behaviour and changes of phase in one-dimensional nonlinear viscoelasticity, J. Differential Equations 44 (1982), 306-341. MR 657784 (83m:73046)
  • [BFJ] K. Binder, H. L. Frisch, and J. Jäckle, Kinetics of phase separation in the presence of slowly relaxing structural variables, J. Chem. Phys. 85 (1986), 1505-1512.
  • [C] J. W. Cahn, On spinodal decomposition, Acta Metall. 9 (1961), 795.
  • [CG] P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys. 19 (1968), 614-627.
  • [D] J. Dieudonné, Foundations of modern analysis, Academic Press, New York, 1969. MR 0349288 (50:1782)
  • [Du] C. J. Dürning, Differential sorption in viscoelastic fluids, J. Polym. Sci. Polym. Phys. Ed. 23 (1985), 1831.
  • [H] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math. vol. 840, Springer, New York, 1981. MR 610244 (83j:35084)
  • [JF1] J. Jäckle and H. L. Frisch, Relaxation of chemical potential and a generalized diffusion equation, J. Polym. Sci. Polym. Phys. Ed. 23 (1985), 675-682.
  • [JF2] -, Properties of a generalized diffusion equation with a memory, J. Chem. Phys. 85 (1986), 1621-27.
  • [KA] K. Kuttler and E. C. Aifantis, Existence and uniqueness in nonclassical diffusion, Quart. Appl. Math. 45 (1987), 549-560. MR 910461 (89m:73006)
  • [P] R. L. Pego, Phase transitions in one-dimensional nonlinear viscoelasticity: admissibility and stability, Arch. Rational Mech. Anal. 97 (1987), 353-394. MR 865845 (87m:73037)
  • [PW] M. Protter and H. Weinberger, Maximum principles in differential equations, Springer-Verlag, New York, 1984. MR 762825 (86f:35034)
  • [S] G. B. Stephenson, Spinodal decomposition in amorphous systems, J. Non-Cryst. Sol. 66 (1984), 393-427.
  • [T1] T. W. Ting, Parabolic and pseudoparabolic partial differential equations, J. Math. Soc. Japan 21 (1969), 440-453. MR 0264231 (41:8827)
  • [T2] -, A cooling process according to two-temperature theory of heat conductions, J. Math. Anal. Appl. 45 (1974), 23-31. MR 0330771 (48:9108)
  • [T3] -, Certain non-steady flows of second order fluids, Arch. Rational Mech. Anal. 14 (1963), 1-26. MR 0153255 (27:3224)
  • [T] H. Triebel, Interpolation theory, function spaces and differential operators, North-Holland, Amsterdam, 1978. MR 503903 (80i:46032b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35K70, 35K55, 80A15

Retrieve articles in all journals with MSC: 35K70, 35K55, 80A15

Additional Information

Keywords: Pattern formation, viscosity, phase separation, dissipative system, pseudoparabolic, nonlinear stability
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society