Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A generalized Berele-Schensted algorithm and conjectured Young tableaux for intermediate symplectic groups


Author: Robert A. Proctor
Journal: Trans. Amer. Math. Soc. 324 (1991), 655-692
MSC: Primary 20G05; Secondary 05A15, 20C15
DOI: https://doi.org/10.1090/S0002-9947-1991-0989583-X
MathSciNet review: 989583
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Schensted and Berele algorithms combinatorially mimic the decompositions of $ { \otimes ^k}V$ with respect to $ {\operatorname{GL} _N}$ and $ {\operatorname{Sp} _{2n}}$. Here we present an algorithm which is a common generalization of these two algorithms. "Intermediate symplectic groups" $ {\operatorname{Sp} _{2n,m}}$ are defined. These groups interpolate between $ {\operatorname{GL} _N}$ and $ {\operatorname{Sp} _N}$. We conjecture that there is a decomposition of $ { \otimes ^k}V$ with respect to $ {\operatorname{Sp} _{2n,m}}$ which is described by the output of the new algorithm.


References [Enhancements On Off] (What's this?)

  • [Be1] A. Berele, A Schensted-type correspondence for the symplectic group, J. Combin. Theory Ser. A 43 (1986), 320-328. MR 867655 (88b:20027)
  • [Be2] -, A construction of $ \operatorname{Sp} $-modules by tableaux, Linear and Multilinear Algebra 19 (1986), 299-307. MR 860718 (88i:20062)
  • [Boe] H. Boerner, Representations of groups, North-Holland, Amsterdam, 1963.
  • [G-V] I. Gessel and G. Viennot, Determinants, paths, and plane partitions, in preparation.
  • [H-W] P. Hanlon and D. Wales, On the decomposition of Brauer's centralizer algebras, J. Algebra 121 (1989), 409-445. MR 992775 (91a:20041a)
  • [Hum] J. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York, 1972. MR 0323842 (48:2197)
  • [Ki1] R. C. King, Weight multiplicities for the classical groups, Group Theoretical Methods in Physics, (Janner, Janssen, and Boon, eds.), Lecture Notes in Physics, vol. 50, Springer-Verlag, New York, 1976. MR 0480895 (58:1044)
  • [Ki2] -, Modification rules and products of irreducible representations of the unitary, orthogonal, and symplectic groups, J. Math. Phys. 12 (1971), 1588-1598. MR 0287816 (44:5019)
  • [K-T] K. Koike and I. Terada, Young-diagrammatic methods for the representation theory of the classical groups of type $ {B_n},\,{C_n},\,{D_n}$, J. Algebra 107 (1987), 466-511. MR 885807 (88i:22035)
  • [Lit] D. E. Littlewood, The theory of group characters, 2nd ed., Oxford Univ. Press, London, 1950.
  • [Mac] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Univ. Press, Oxford, 1979. MR 553598 (84g:05003)
  • [Pr1] R. Proctor, Odd symplectic groups, Invent. Math. 92 (1988), 307-332. MR 936084 (89c:20065)
  • [Pr2] -, Four Littlewood-Richardson proofs, unpublished notes.
  • [Pr3] -, A Schensted algorithm which models tensor representations of the orthogonal group, Canad. J. Math. 42 (1990), 28-49. MR 1043509 (91a:20045)
  • [Pr4] -, Young tableaux, Gelfand patterns, and branching rules for classical groups, preprint.
  • [R-W] A. Ram and H. Wenzl, Matrix units for centralizer algebras, preprint. MR 1144939 (93g:16024)
  • [Sch] C. Schensted, Longest increasing and decreasing subsequences, Canad. J. Math. 13 (1961), 179-191. MR 0121305 (22:12047)
  • [Sun] S. Sundaram, On the combinatorics of representations of $ \operatorname{Sp} (2n,\,{\mathbf{C}})$, Ph.D. Thesis, M.I.T., 1986.
  • [Tho] G. P. Thomas, On a construction of Schützenberger, Discrete Math. 17 (1977), 107-118. MR 0450084 (56:8383)
  • [Wey] H. Weyl, The classical groups, Princeton Univ. Press, Princeton, N.J., 1939. MR 1488158 (98k:01049)
  • [Zhe] D. P. Zhelobenko, The classical groups. Spectral analysis of their finite dimensional representations, Russian Math. Surveys 17 (1962), 1-94.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20G05, 05A15, 20C15

Retrieve articles in all journals with MSC: 20G05, 05A15, 20C15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-0989583-X
Keywords: Schensted's algorithm, jeu d'tacquin, symplectic groups, tensor representations of Lie groups, Schur functions, group characters
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society