Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Weak type estimates for a singular convolution operator on the Heisenberg group


Author: Loukas Grafakos
Journal: Trans. Amer. Math. Soc. 325 (1991), 435-452
MSC: Primary 43A80; Secondary 22E30, 42B20
MathSciNet review: 1024772
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: On the Heisenberg group $ {\mathbb{H}^n}$ with coordinates $ (z,t) \in {\mathbb{C}^n} \times \mathbb{R}$, define the distribution $ K(z,t) = L(z)\delta (t)$, where $ L(z)$ is a homogeneous distribution on $ {\mathbb{C}^n}$ of degree $ - 2n$ , smooth away from the origin and $ \delta (t)$ is the Dirac mass in the $ t$ variable. We prove that the operator given by convolution with $ K$ maps $ {H^1}({\mathbb{H}^n})$ to weak $ {L^1}({\mathbb{H}^n})$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A80, 22E30, 42B20

Retrieve articles in all journals with MSC: 43A80, 22E30, 42B20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1991-1024772-X
PII: S 0002-9947(1991)1024772-X
Article copyright: © Copyright 1991 American Mathematical Society