Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ K\sb 1$-groups, quasidiagonality, and interpolation by multiplier projections


Author: Shuang Zhang
Journal: Trans. Amer. Math. Soc. 325 (1991), 793-818
MSC: Primary 46L05; Secondary 46L80
DOI: https://doi.org/10.1090/S0002-9947-1991-0998130-8
MathSciNet review: 998130
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We relate the following conditions on a $ \sigma $-unital $ {C^\ast}$-algebra $ A$ with the " $ {\text{FS}}$ property": (a) $ {K_1}(A) = 0$; (b) every projection in $ M(A)/A$ lifts; (c) the general Weyl-von Neumann theorem holds in $ M(A)$: Any selfadjoint element $ h$ in $ M(A)$ can be written as $ h = \sum\nolimits_{i = 1}^\infty {{\lambda _i}{p_i} + a} $ for some selfadjoint element $ a$ in $ A$, some bounded real sequence $ \{ {\lambda _i}\} $, and some mutually orthogonal projections $ \{ {p_i}\} $ in $ A$ with $ \sum\nolimits_{i = 1}^\infty {{p_i} = 1} $; (d) $ M(A)$ has $ {\text{FS}}$; and (e) interpolation by multiplier projections holds: For any closed projections $ p$ and $ q$ in $ {A^{\ast \ast}}$ with $ pq = 0$, there is a projection $ r$ in $ M(A)$ such that $ p \leq r \leq 1 - q$.

We prove various equivalent versions of (a)-(e), and show that (e) $ \Leftrightarrow $ (d) $ \Leftrightarrow $ (c) $ \Rightarrow $ (b) $ \Leftarrow $ (a), and that (a) $ \Leftrightarrow $ (b) if, in addition, $ A$ is stable. Combining the above results, we obtain counterexamples to the conjecture of G. K. Pedersen "$ A$ has $ FS \Rightarrow M(A)$ has $ {\text{FS}}$" (for example the stabilized Bunce-Deddens algebras). Hence the generalized Weyl-von Neumann theorem does not generally hold in $ L({H_A})$ for $ \sigma $-unital $ {C^\ast}$-algebras with $ {\text{FS}}$.


References [Enhancements On Off] (What's this?)

  • [1] C. A. Akemann, The general Stone-Weierstrass problem, J. Funct. Anal. 4 (1969), 277-294. MR 0251545 (40:4772)
  • [2] -, Left ideal structure of $ {C^\ast}$-algebras, J. Funct. Anal. 6 (1970), 305-317. MR 0275177 (43:934)
  • [3] C. A. Akemann, G. K. Pedersen, and J. Tomiyama, Multipliers of $ {C^\ast}$-algebras, J. Funct. Anal. 13 (1973), 277-301. MR 0470685 (57:10431)
  • [4] I. D. Berg, An extension of the Weyl-von Neumann theorem to normal operators, Trans. Amer. Math. Soc. 160 (1971), 365-371. MR 0283610 (44:840)
  • [5] J. Bunce and J. Deddens, A family of simple $ {C^\ast}$-algebras related to weighted shift operators, J. Funct. Anal. 19 (1975), 13-24. MR 0365157 (51:1410)
  • [6] B. Blackadar, Notes on the structure of projections in simple $ {C^\ast}$-algebras, Semesterbericht Funktionalanalysis, W82, Tübingen, March 1983.
  • [7] -, $ K$-theory for operator algebras, Springer-Verlag, New York, 1987.
  • [8] B. Blackadar and A. Kumjian, Skew products of relations and the structure of simple $ {C^\ast}$-algebras, Math. Z. 189 (1985), 55-63. MR 776536 (86g:46083)
  • [9] O. Bratteli, Inductive limits of finite-dimensional $ {C^\ast}$-algebras, Trans. Amer. Math. Soc. 171 (1972), 195-234. MR 0312282 (47:844)
  • [10] L. G. Brown, Extensions of $ AF$ algebras: the projection lifting problem, Operator Algebras and Applications, Proc. Sympos. Pure Math., vol. 38, part I, Amer. Math. Soc., Providence, R.I., 1981, pp. 175-176.
  • [11] -, Semicontinuity and multipliers of $ {C^\ast}$-algebras, Canad. J. Math. 40 (1989), 769-887.
  • [12] -, private communication.
  • [13] L. G. Brown and G. Pedersen, $ {C^\ast}$-algebras of real rank zero, preprint. MR 1120918 (92m:46086)
  • [14] R. Busby, Double centralizers and extensions of $ {C^\ast}$-algebras, Trans. Amer. Math. Soc. 132 (1968), 79-99. MR 0225175 (37:770)
  • [15] M.-D. Choi, Lifting projections from quotient $ {C^\ast}$-algebras, J. Operator Theory 10 (1983), 21-30. MR 715551 (85c:46060)
  • [16] J. Cuntz, A class of $ {C^\ast}$-algebras and topological Markov chains II: Reducible Markov chains and the $ \operatorname{Ext}$-functor for $ {C^\ast}$-algebras, Invent. Math. 63 (1981), 25-40. MR 608527 (82f:46073b)
  • [17] J. Cuntz and N. Higson, Kuiper's theorem for Hilbert modules, Operator Algebra and Mathematical Physics (Proc. Summer Conf. June 17-21, 1985), Contemp. Math., vol. 62, Amer. Math. Soc., Providence, R.I., 1987. MR 878392 (88f:46108)
  • [18] J. Dixmier, $ {C^\ast}$-algebras, North-Holland, 1977. MR 0458185 (56:16388)
  • [19] E. G. Effros, Dimensions and $ {C^\ast}$-algebras, CBMS Regional Conf. Ser. in Math., no. 46, Amer. Math. Soc., Providence, R.I., 1981.
  • [20] G. A. Elliott, Derivations of matroid $ {C^\ast}$-algebras. II, Ann. of Math. (2) 100 (1974), 407-422. MR 0352999 (50:5485)
  • [21] -, Automorphisms determined by multipliers on ideals of a $ {C^\ast}$-algebra, J. Funct. Anal. 23 (1976), 1-10. MR 0440372 (55:13247)
  • [22] P. Halmos, Quasitriangular operators, Acta Sci. Math. (Szeged) 29 (1968), 283-293. MR 0234310 (38:2627)
  • [23] G. J. Murphy, Diagonality in $ {C^\ast}$-algebras, Math. Z. 199 (1988), 279-284. MR 958652 (90c:46070)
  • [24] G. Kasparov, Hilbert $ {C^\ast}$-modules: Theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980), 133-150. MR 587371 (82b:46074)
  • [25] J. Mingo, $ K$-theory and multipliers of stable $ {C^\ast}$-algebras, Trans. Amer. Math. Soc. 299 (1987), 397-412. MR 869419 (88f:46136)
  • [26] G. K. Pedersen, The linear span of projections in simple $ {C^\ast}$-algebras, J. Operator Theory 4 (1980), 289-296. MR 595417 (82b:46078)
  • [27] -, $ SA{W^\ast}$-algebras and Corona $ {C^\ast}$-algebras, contributions to non-commutative topology, J. Operator Theory 15 (1986), 15-32.
  • [28] D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), 97-113. MR 0415338 (54:3427)
  • [29] H. Weyl, Ueber beschraenkte quadratischen formen deren differentz vollstetigist, Rend. Circ. Mat. Palermo 27 (1909), 373-392.
  • [30] S. Zhang, Certain $ {C^\ast}$-algebras with real rank zero and their corona and multiplier algebras, Parts I, IV, preprints.
  • [31] -, Certain $ {C^\ast}$-algebras with real rank zero and their corona and multiplier algebras, Part II, $ K$-Theory (to appear); Part III, Canad. J. Math. 62 (1990), 159-190.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L05, 46L80

Retrieve articles in all journals with MSC: 46L05, 46L80


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-0998130-8
Keywords: $ K$-theory of $ {C^\ast}$-algebras, multiplier algebras, quasidiagonality, projections
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society