Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

Monogenic differential calculus


Author: F. Sommen
Journal: Trans. Amer. Math. Soc. 326 (1991), 613-632
MSC: Primary 30G35; Secondary 58A10
MathSciNet review: 1012510
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study differential forms satisfying a Dirac type equation and taking values in a Clifford algebra. For them we establish a Cauchy representation formula and we compute winding numbers for pairs of nonintersecting cycles in $ {\mathbb{R}^m}$ as residues of special differential forms. Next we prove that the cohomology spaces for the complex of monogenic differential forms split as direct sums of de Rham cohomology spaces. We also study duals of spaces of monogenic differential forms, leading to a general residue theory in Euclidean space. Our theory includes the one established in our paper [11] and is strongly related to certain differential forms introduced by Habetha in [4].


References [Enhancements On Off] (What's this?)

  • [1] J. W. Alexander, On the chains of a complex and their duals, Proc. Nat. Acad. Sci. U.S.A. 21 (1935), 509-511.
  • [2] F. Brackx, R. Delanghe, and F. Sommen, Clifford anaylsis, Research Notes in Math., no. 76, Pitman, London, 1982.
  • [3] R. Delanghe and F. Brackx, Duality in hypercomplex function theory, J. Funct. Anal. 37 (1980), no. 2, 164–181. MR 578930 (81j:46029a), http://dx.doi.org/10.1016/0022-1236(80)90039-7
  • [4] K. Habetha, Eine Definition des Kroneckerindexes im 𝑅ⁿ⁺¹ mit Hilfe der Cliffordanalysis, Z. Anal. Anwendungen 5 (1986), no. 2, 133–137 (German, with English and Russian summaries). MR 837640 (87h:30098)
  • [5] David Hestenes and Garret Sobczyk, Clifford algebra to geometric calculus, Fundamental Theories of Physics, D. Reidel Publishing Co., Dordrecht, 1984. A unified language for mathematics and physics. MR 759340 (86g:15012)
  • [6] Morris W. Hirsch, Differential topology, Springer-Verlag, New York, 1976. Graduate Texts in Mathematics, No. 33. MR 0448362 (56 #6669)
  • [7] W. Hodge, The theory and applications of harmonic integrals, Cambridge Univ. Press, 1959.
  • [8] L. S. Pontryagin, Foundations of combinatorial topology, Graylock Press, Rochester, N. Y., 1952. MR 0049559 (14,194b)
  • [9] G. de Rham, Variétés différentiables. Formes, courants, formes harmoniques, Hermann, Paris, 1955.
  • [10] F. Sommen, An extension of the Radon transform to Clifford analysis, Complex Variables Theory Appl. 8 (1987), no. 3-4, 243–266. MR 898067 (88j:30096)
  • [11] F. Sommen, Monogenic differential forms and homology theory, Proc. Roy. Irish Acad. Sect. A 84 (1984), no. 2, 87–109. MR 790302 (87b:30074)
  • [12] F. Sommen and V. Souček, Hypercomplex differential forms applied to the de Rham and the Dolbeault complex, Geometry seminars 1984 (Italian) (Bologna, 1984) Univ. Stud. Bologna, Bologna, 1985, pp. 177–192. MR 866157 (88a:58008)
  • [13] V. Souček, Quaternion valued differential forms in $ {\mathbb{R}^4}$, Suppl. Rend. Circ. Mat. Palermo (2) 33 (1984), 293-300.
  • [14] Cornelius von Westenholz, Differential forms in mathematical physics, North-Holland Publishing Co., Amsterdam, 1978. Studies in Mathematics and its Applications, Vol. 3. MR 0494187 (58 #13108)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30G35, 58A10

Retrieve articles in all journals with MSC: 30G35, 58A10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1991-1012510-6
PII: S 0002-9947(1991)1012510-6
Article copyright: © Copyright 1991 American Mathematical Society