Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Moderate deviations and associated Laplace approximations for sums of independent random vectors


Author: A. de Acosta
Journal: Trans. Amer. Math. Soc. 329 (1992), 357-375
MSC: Primary 60F10; Secondary 60B12
DOI: https://doi.org/10.1090/S0002-9947-1992-1046015-4
MathSciNet review: 1046015
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \{ {X_j}\} $ be an i.i.d. sequence of Banach space valued r.v.'s and let $ {S_n} = \sum\nolimits_{j = 1}^n {{X_j}} $. For certain positive sequences $ {b_n} \to \infty $, we determine the exact asymptotic behavior of $ E{\operatorname{exp}}\{ (b_n^2/n)\Phi ({S_n}/{b_n})\} $, where $ \Phi $ is a smooth function. We also prove a large deviation principle for $ \{ \mathcal{L}({S_n}/{b_n})\} $.


References [Enhancements On Off] (What's this?)

  • [1] A. de Acosta, Upper bounds for large deviations of dependent random vectors, Z. Wahrsch. Verw. Gebiete 69 (1985), 551-565. MR 791911 (87f:60036)
  • [2] -, On large deviations of sums of independent random vectors, Lecture Notes in Math., vol. 1153, Springer-Verlag, Berlin and New York, 1985, pp. 1-14. MR 821973 (87f:60035)
  • [3] A. de Acosta, A. Araujo, and E. Giné, On Poisson measures, Gaussian measures and the central limit theorem in Banach spaces, Advances in Probability, vol. IV, Dekker, New York, 1978, pp. 1-68. MR 515429 (80h:60009)
  • [4] A. de Acosta and E. Giné, Convergence of moments and related functionals in the general central limit theorem in Banach spaces, Z. Wahrsch. Verw. Gebiete 48 (1979), 213-231. MR 534846 (80h:60011)
  • [5] A. de Acosta and J. Kuelbs, Some results on the cluster set $ C(\{ {S_n}/{a_n}\} )$ and the LIL, Ann. Probab. 11 (1983), 102-122. MR 682803 (84f:60008)
  • [6] A. Araujo and E. Giné, The central limit theorem for real and Banach valued random variables, Wiley, New York, 1980. MR 576407 (83e:60003)
  • [7] R. Azencott, Grandes déviations et applications, Lecture Notes in Math., vol. 774, Springer-Verlag, Berlin and New York, 1980. MR 590626 (81m:58085)
  • [8] R. R. Bahadur and S. Zabell, Large deviations of the sample mean in general vector spaces, Ann. Probab. 7 (1979), 587-621. MR 537209 (80i:60031)
  • [9] P. Billingsley, Convergence of probability measures, Wiley, New York, 1968. MR 0233396 (38:1718)
  • [10] E. Bolthausen, Laplace approximations for sums of independent random vectors. Probab. Theory Related Fields 72 (1986), 305-318. MR 836280 (88b:60075)
  • [11] -, Laplace approximations for sums of independent random vectors. Part II, Probab. Theory Related Fields 76 (1987), 167-206. MR 906774 (89g:60092)
  • [12] C. Borell, Gaussian Radon measures on locally convex spaces, Math. Scand. 38 (1976), 265-284. MR 0436303 (55:9250)
  • [13] A. A. Borovkov and A. A. Mogulskii, Probabilities of large deviations in topological spaces. I, Siberian Math. J. 19 (1978), 697-709. MR 508496 (80c:60045)
  • [14] M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time. III, Comm. Pure Appl. Math. 29 (1976), 389-461. MR 0428471 (55:1492)
  • [15] R. Ellis, Entropy, large deviations and statistical mechanics. Springer-Verlag, Berlin and New York, 1985. MR 793553 (87d:82008)
  • [16] W. Feller, An introduction to probability theory and its applications, vol. 2, Wiley, New York, 1971. MR 0270403 (42:5292)
  • [17] M. I. Freidlin and A. D. Wentzell, Random perturbations of dynamical systems, Springer-Verlag, Berlin and New York, 1984. MR 722136 (85a:60064)
  • [18] A. Martin-Làf, Laplace approximation for sums of independent random variables, Z. Wahrsch. Verw. Gebiete 59 (1982), 101-115. MR 643791 (83c:60054)
  • [19] V. V. Petrov, Sums of independent random variables, Springer-Verlag, Berlin and New York, 1975. MR 0388499 (52:9335)
  • [20] S. R. S. Varadhan, Large deviations and applications, SIAM, Philadelphia, Pa., 1984. MR 758258 (86h:60067b)
  • [21] V. V. Yurinskii, Exponential inequalities for sums of random vectors, J. Multivariate Anal. 6 (1976), 473-499. MR 0428401 (55:1422)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60F10, 60B12

Retrieve articles in all journals with MSC: 60F10, 60B12


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1046015-4
Keywords: Moderate and large deviations, exact asymptotics, Laplace approximation
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society