Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Characterizations of algebras arising from locally compact groups


Author: Paul L. Patterson
Journal: Trans. Amer. Math. Soc. 329 (1992), 489-506
MSC: Primary 43A10; Secondary 22D15, 46K05
DOI: https://doi.org/10.1090/S0002-9947-1992-1043862-X
MathSciNet review: 1043862
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Two Banach $ ^{\ast}$-algebras are naturally associated with a locally compact group, $ G$: the group algebra, $ {L^1}(G)$, and the measure algebra, $ M(G)$. Either of these Banach algebras is a complete set of invariants for $ G$.

In any Banach $ ^{\ast}$-algebra, $ A$, the norm one unitary elements form a group, $ S$. Using $ S$ we characterize those Banach $ ^{\ast}$-algebras, $ A$, which are isometrically $ ^{\ast}$-isomorphic to $ M(G)$. Our characterization assumes that $ A$ is the dual of some Banach space and that its operations are continuous in the resulting weak $ ^{\ast}$ topology. The other most important condition is that the convex hull of $ S$ must be weak$ ^{\ast}$ dense in the unit ball of $ A$.

We characterize Banach $ ^{\ast}$-algebras which are isomerically isomorphic to $ {L^1}(G)$ for some $ G$ as those algebras, $ A$, whose double centralizer algebra, $ D(A)$, satisfies our characterization for $ M(G)$. In addition we require $ A$ to consist of those elements of $ D(A)$ on which $ S$ (defined relative to $ D(A)$) acts continuously with its weak$ ^{\ast}$ topology. Using another characterization of $ {L^1}(G)$ we explicitly calculate the above isomorphism between $ A$ and $ {L^1}(G)$.


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Integration, Chapter VI, Hermann, Paris, 1959. MR 0124722 (23:A2033)
  • [2] J. Dixmier, Sur un théorème de Banach, Duke Math. J. 15 (1948), 1057-1071. MR 0027440 (10:306g)
  • [3] R. S. Doran and T. W. Palmer, General theory of $ ^{\ast}$-algebras, Cambridge Univ. Press (to appear). MR 1819503 (2002e:46002)
  • [4] R. Ellis, Locally compact transformation groups, Duke Math. J. 24 (1957), 119-125. MR 0088674 (19:561b)
  • [5] I. Gelfand and M. Naimark, On the embedding of normed rings into the ring of operators in Hilbert space, Mat. USSR-Sb. 12 (1943), 197-213. MR 0009426 (5:147d)
  • [6] F. P. Greenleaf, Characterization of group algebras in terms of their translation operators, Pacific J. Math. 18 (1965), 243-276. MR 0200738 (34:626)
  • [7] E. Hewitt and S. Kakutani, Some multiplicative functionals on $ M(G)$, Ann. of Math. 79 (1979), 489-505. MR 0161176 (28:4384)
  • [8] E. Hewitt and K. Ross, Abstract harmonic analysis, Vol. 2, Springer-Verlag, Berlin, 1979. MR 551496 (81k:43001)
  • [9] -, Abstract harmonic analysis, Vol. 2, Springer-Verlag, Berlin, 1970.
  • [10] B. Johnson, Isometric isomorphisms of measure algebras, Proc. Amer. Math. Soc. 15 (1964), 186-188. MR 0160846 (28:4056)
  • [11] -, An introduction to the theory of centralizers, Proc. London Math. Soc. 14 (1964), 299-320. MR 0159233 (28:2450)
  • [12] J. L. Kelley, General topology, Springer-Verlag, New York, 1961. MR 0370454 (51:6681)
  • [13] K. McKennon, Multipliers and positive functionals, Mem. Amer. Math. Soc. 71 (1971). MR 0440299 (55:13174)
  • [14] M. A. Rieffel, A characterization of commutative group algebras and measure algebras, Trans. Amer. Math. Soc. 116 (1965), 32-65. MR 0198141 (33:6300)
  • [15] R. Rigelhof, A characterization of $ M(G)$, Trans. Amer. Math. Soc. 136 (1969), 373-379. MR 0234218 (38:2536)
  • [16] W. Rudin, Functional analysis, McGraw-Hill, New York, 1973. MR 0365062 (51:1315)
  • [17] S. Sakai, A characterization of $ {W^{\ast}}$-algebras, Pacific J. Math. 6 (1956), 763-773. MR 0084115 (18:811f)
  • [18] -, $ {C^{\ast}}$-algebras and $ {W^{\ast}}$-algebras, Springer-Verlag, New York, 1971.
  • [19] G. L. G. Sleijpen, Locally compact semigroups and continuous translations of measures, Proc. London Math. Soc. 37 (1978), 75-97. MR 0499939 (58:17682a)
  • [20] J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math. 2 (1952), 251-261. MR 0049911 (14:246c)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A10, 22D15, 46K05

Retrieve articles in all journals with MSC: 43A10, 22D15, 46K05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1043862-X
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society