The moment map of a Lie group representation

Author:
N. J. Wildberger

Journal:
Trans. Amer. Math. Soc. **330** (1992), 257-268

MSC:
Primary 58F05; Secondary 22E46

MathSciNet review:
1040046

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given an Hadamard matrix one can extract symmetric designs on points each of which extends uniquely to a -design. Further, when is a square, certain Hadamard matrices yield symmetric designs on points. We study these, and other classes of designs associated with Hadamard matrices, using the tools of algebraic coding theory and the customary association of linear codes with designs. This leads naturally to the notion, defined for any prime , of -equivalence for Hadamard matrices for which the standard equivalence of Hadamard matrices is, in general, a refinement: for example, the sixty matrices fall into only six -equivalence classes. In the case, -equivalence is identical to the standard equivalence, but our results illuminate this case also, explaining why only the Sylvester matrix can be obtained from a difference set in an elementary abelian -group, why two of the matrices cannot be obtained from a symmetric design on points, and how the various designs may be viewed through the lens of the four-dimensional affine space over the two-element field.

**[1]**E. F. Assmus Jr.,*On the theory of designs*, Surveys in combinatorics, 1989 (Norwich, 1989) London Math. Soc. Lecture Note Ser., vol. 141, Cambridge Univ. Press, Cambridge, 1989, pp. 1–21. MR**1036749****[2]**E. F. Assmus Jr. and J. D. Key,*Affine and projective planes*, Discrete Math.**83**(1990), no. 2-3, 161–187. MR**1065696**, 10.1016/0012-365X(90)90003-Z**[3]**E. F. Assmus Jr. and J. D. Key,*Translation planes and derivation sets*, J. Geom.**37**(1990), no. 1-2, 3–16. MR**1041974**, 10.1007/BF01230354**[4]**E. F. Assmus Jr. and Chester J. Salwach,*The (16,6,2) designs*, Internat. J. Math. Math. Sci.**2**(1979), no. 2, 261–281. MR**539203**, 10.1155/S0161171279000247**[5]**Bhaskar Bagchi and N. S. Narasimha Sastry,*Even order inversive planes, generalized quadrangles and codes*, Geom. Dedicata**22**(1987), no. 2, 137–147. MR**877206**, 10.1007/BF00181262**[6]**Vasanti N. Bhat and S. S. Shrikhande,*Non-isomorphic solutions of some balanced incomplete block designs. I.*, J. Combinatorial Theory**9**(1970), 174–191. MR**0266771****[7]**R. C. Bose and S. S. Shrikhande,*On the construction of sets of mutually orthogonal Latin squares and the falsity of a conjecture of Euler*, Trans. Amer. Math. Soc.**95**(1960), 191–209. MR**0111695**, 10.1090/S0002-9947-1960-0111695-3**[8]**A. E. Brouwer,*Some unitals on 28 points and their embeddings in projective planes of order 9*, Geometries and groups (Berlin, 1981) Lecture Notes in Math., vol. 893, Springer, Berlin-New York, 1981, pp. 183–188. MR**655065****[9]**J. H. Conway and Vera Pless,*On the enumeration of self-dual codes*, J. Combin. Theory Ser. A**28**(1980), no. 1, 26–53. MR**558873**, 10.1016/0097-3165(80)90057-6**[10]**Philippe Delsarte,*A geometric approach to a class of cyclic codes*, J. Combinatorial Theory**6**(1969), 340–358. MR**0267957****[11]**J. F. Dillon, Private communication.**[12]**J. F. Dillon,*Elementary Hadamard difference sets*, Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1975), Utilitas Math., Winnipeg, Man., 1975, pp. 237–249. Congressus Numerantium, No. XIV. MR**0409221****[13]**J. F. Dillon and J. R. Schatz,*Block designs with the symmetric difference property*, (Robert L. Ward, Ed.), Proc. NSA Mathematical Sciences Meetings, The United States Government, 1987, pp. 159-164.**[14]**Jean Doyen, Xavier Hubaut, and Monique Vandensavel,*Ranks of incidence matrices of Steiner triple systems*, Math. Z.**163**(1978), no. 3, 251–259. MR**513730**, 10.1007/BF01174898**[15]**J.-M. Goethals and J. J. Seidel,*Strongly regular graphs derived from combinatorial designs*, Canad. J. Math.**22**(1970), 597–614. MR**0282872****[16]**Ken Gray,*Further results on designs carried by a code*, Ars Combin.**26**(1988), no. B, 133–152. MR**990544****[17]**Marshall Hall Jr.,*Combinatorial theory*, 2nd ed., Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, Inc., New York, 1986. A Wiley-Interscience Publication. MR**840216****[18]**N. Hamada and H. Ohmori,*On the BIB design having the minimum 𝑝-rank*, J. Combinatorial Theory Ser. A**18**(1975), 131–140. MR**0416939****[19]**J. W. P. Hirschfeld,*Projective geometries over finite fields*, The Clarendon Press, Oxford University Press, New York, 1979. Oxford Mathematical Monographs. MR**554919****[20]**D. R. Hughes and F. C. Piper,*Design theory*, Cambridge University Press, Cambridge, 1985. MR**812053****[21]**Noboru Ito, Jeffrey S. Leon, and Judith Q. Longyear,*Classification of 3-(24,12,5) designs and 24-dimensional Hadamard matrices*, J. Combin. Theory Ser. A**31**(1981), no. 1, 66–93. MR**626442**, 10.1016/0097-3165(81)90054-6**[22]**Dieter Jungnickel and Vladimir D. Tonchev,*On symmetric and quasi-symmetric designs with the symmetric difference property and their codes*, J. Combin. Theory Ser. A**59**(1992), no. 1, 40–50. MR**1141321**, 10.1016/0097-3165(92)90097-E**[23]**J. D. Key and K. Mackenzie,*Ovals in the designs 𝑊(2^{𝑚})*, Ars Combin.**33**(1992), 113–117. MR**1174835****[24]**Hiroshi Kimura,*Classification of Hadamard matrices of order 28 with Hall sets*, Discrete Math.**128**(1994), no. 1-3, 257–268. MR**1271869**, 10.1016/0012-365X(94)90117-1**[25]**Hiroshi Kimura,*On equivalence of Hadamard matrices*, Hokkaido Math. J.**17**(1988), no. 1, 139–146. MR**928471**, 10.14492/hokmj/1381517792**[26]**Hiroshi Kimura,*New Hadamard matrix of order 24*, Graphs Combin.**5**(1989), no. 3, 235–242. MR**1027704**, 10.1007/BF01788676**[27]**Eric S. Lander,*Symmetric designs: an algebraic approach*, London Mathematical Society Lecture Note Series, vol. 74, Cambridge University Press, Cambridge, 1983. MR**697566****[28]**Jeffrey S. Leon, Vera Pless, and N. J. A. Sloane,*On ternary self-dual codes of length 24*, IEEE Trans. Inform. Theory**27**(1981), no. 2, 176–180. MR**633414**, 10.1109/TIT.1981.1056328**[29]**J. S. Leon, V. Pless, and N. J. A. Sloane,*Self-dual codes over 𝐺𝐹(5)*, J. Combin. Theory Ser. A**32**(1982), no. 2, 178–194. MR**654620**, 10.1016/0097-3165(82)90019-X**[30]**K. Mackenzie,*Codes of designs*, Ph.D. thesis, Univ. of Birmingham, 1989.**[31]**F. J. MacWilliams and N. J. A. Sloane,*The theory of error-correcting codes*, North-Holland, 1983.**[32]**F. J. MacWilliams, N. J. A. Sloane, and J. G. Thompson,*Good self dual codes exist*, Discrete Math.**3**(1972), 153–162. MR**0307799****[33]**Henry B. Mann,*Addition theorems: The addition theorems of group theory and number theory*, Interscience Publishers John Wiley & Sons New York-London-Sydney, 1965. MR**0181626****[34]**Antonio Maschietti,*Hyperovals and Hadamard designs*, J. Geom.**44**(1992), no. 1-2, 107–116. MR**1169413**, 10.1007/BF01228287**[35]**C. W. Norman,*Nonisomorphic Hadamard designs*, J. Combinatorial Theory Ser. A**21**(1976), no. 3, 336–344. MR**0419258****[36]**Vera Pless and N. J. A. Sloane,*Binary self-dual codes of length 24*, Bull. Amer. Math. Soc.**80**(1974), 1173–1178. MR**0689175**, 10.1090/S0002-9904-1974-13662-1**[37]**Chester J. Salwach,*Planes, biplanes, and their codes*, Amer. Math. Monthly**88**(1981), no. 2, 106–125. MR**606250**, 10.2307/2321134**[38]**S. S. Shrikhande and N. K. Singh,*On a method of constructing symmetrical balanced incomplete block designs*, Sankhyā Ser. A**24**(1962), 25–32. MR**0144435****[39]**J. A. Todd,*A combinatorial problem*, J. Math. Phys.**12**(1933), 321-333.**[40]**Vladimir D. Tonchev,*Hadamard matrices of order 28 with automorphisms of order 7*, J. Combin. Theory Ser. A**40**(1985), no. 1, 62–81. MR**804869**, 10.1016/0097-3165(85)90047-0**[41]**Michael A. Wertheimer,*Oval designs in quadrics*, Finite geometries and combinatorial designs (Lincoln, NE, 1987) Contemp. Math., vol. 111, Amer. Math. Soc., Providence, RI, 1990, pp. 287–297. MR**1079752**, 10.1090/conm/111/1079752**[42]**-,*Designs in quadrics*, Ph.D. thesis, Univ. of Pennsylvania, 1986.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58F05,
22E46

Retrieve articles in all journals with MSC: 58F05, 22E46

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1040046-6

Keywords:
Hadamard matrix,
-design,
symmetric design,
oval,
linear code,
difference set,
self-orthogonal code,
self-dual code

Article copyright:
© Copyright 1992
American Mathematical Society