Generalized Szegő theorems and asymptotics of cumulants by graphical methods

Author:
Florin Avram

Journal:
Trans. Amer. Math. Soc. **330** (1992), 637-649

MSC:
Primary 60F05

MathSciNet review:
1059708

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain some general asymptotics results about a class of deterministic sums called "sums with dependent indices," which generalize a classical theorem of Szegö. The above type of sums is encountered when establishing convergence to the Gaussian distribution of sums of Wick products by the method of cumulants. Our asymptotic results reduce in this situation the proof of the central limit theorem to the study of the connectivity of a family of associated graphs.

**[AB]**Florin Avram and Lawrence Brown,*A generalized Hölder inequality and a generalized Szegő theorem*, Proc. Amer. Math. Soc.**107**(1989), no. 3, 687–695. MR**984781**, 10.1090/S0002-9939-1989-0984781-X**[A]**F. Avram,*On bilinear forms in Gaussian random variables and Toeplitz matrices*, Probab. Theory Related Fields**79**(1988), no. 1, 37–45. MR**952991**, 10.1007/BF00319101**[AF]**Florin Avram and Robert Fox,*Central limit theorems for sums of Wick products of stationary sequences*, Trans. Amer. Math. Soc.**330**(1992), no. 2, 651–663. MR**1034656**, 10.1090/S0002-9947-1992-1034656-X**[B]**R. Bixby,*Matroids and operations research*, Preprint.**[BM]**Peter Breuer and Péter Major,*Central limit theorems for nonlinear functionals of Gaussian fields*, J. Multivariate Anal.**13**(1983), no. 3, 425–441. MR**716933**, 10.1016/0047-259X(83)90019-2**[BP]**Victor Bryant and Hazel Perfect,*Independence theory in combinatorics*, Chapman & Hall, London-New York, 1980. An introductory account with applications to graphs and transversals; Chapman and Hall Mathematics Series. MR**604173****[F1]**Robert Fox and Murad S. Taqqu,*Noncentral limit theorems for quadratic forms in random variables having long-range dependence*, Ann. Probab.**13**(1985), no. 2, 428–446. MR**781415****[F2]**Robert Fox and Murad S. Taqqu,*Central limit theorems for quadratic forms in random variables having long-range dependence*, Probab. Theory Related Fields**74**(1987), no. 2, 213–240. MR**871252**, 10.1007/BF00569990**[GS]**Ulf Grenander and Gabor Szegö,*Toeplitz forms and their applications*, California Monographs in Mathematical Sciences, University of California Press, Berkeley-Los Angeles, 1958. MR**0094840****[G1]**L. Giraitis and D. Surgailis,*CLT and other limit theorems for functionals of Gaussian processes*, Z. Wahrsch. Verw. Gebiete**70**(1985), no. 2, 191–212. MR**799146**, 10.1007/BF02451428**[G2]**-,*Multivariate Appell polynomials and the central limit theorem*, Dependence and Independence in Probability and Statistics, (E.. Eberlein and M. Taqqu, eds.), Birkhäuser, 1986.**[K]**Yitzhak Katznelson,*An introduction to harmonic analysis*, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR**0248482****[W]**D. J. A. Welsh,*Matroid theory*, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. L. M. S. Monographs, No. 8. MR**0427112**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
60F05

Retrieve articles in all journals with MSC: 60F05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1059708-X

Keywords:
Power counting conditions,
generalized Hölder inequality,
Szegö theorem,
bond matroid,
diagram formulae

Article copyright:
© Copyright 1992
American Mathematical Society