Noetherian ring extensions with trace conditions

Author:
Robert B. Warfield

Journal:
Trans. Amer. Math. Soc. **331** (1992), 449-463

MSC:
Primary 16P40; Secondary 16D20, 16D30

MathSciNet review:
1080737

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Finite ring extensions of Noetherian rings with certain restrictions on the corresponding trace ideals are studied. This setting includes finite free extensions and extensions arising from actions of finite groups when the order of the group is invertible. In this setting we establish the following results which were previously obtained (for finite extensions without trace conditions) only under strong restrictions on the rings involved. Let be an extension of Noetherian rings such that is finitely generated as a left -module and such that the left trace ideal of in is equal to . If is right fully bounded, or is a Jacobson ring, then has the same property; furthermore, and have the same classical Krull dimension. If is finitely generated as both a right and a left -module, if both trace ideals of in are equal to , and if satisfies the strong second layer condition, then this condition also holds in . Finally, we compare the link graphs of and

**[1]**A. D. Bell,*Localization and ideal theory in Noetherian crossed products and differential operator rings*, Ph.D. Dissertation, Univ. of Washington, 1984.**[2]**-,*Notes on localization in noncommutative Noetherian rings*, Cuadernos de Algebra 9, Universidad de Granada, 1988.**[3]**K. A. Brown and S. P. Smith,*Bimodules over a solvable algebraic Lie algebra*, Quart. J. Math. Oxford Ser. (2)**36**(1985), no. 142, 129–139. MR**790475**, 10.1093/qmath/36.2.129**[4]**Kenneth A. Brown and R. B. Warfield Jr.,*The influence of ideal structure on representation theory*, J. Algebra**116**(1988), no. 2, 294–315. MR**953153**, 10.1016/0021-8693(88)90219-0**[5]**Barbara Cortzen and Lance W. Small,*Finite extensions of rings*, Proc. Amer. Math. Soc.**103**(1988), no. 4, 1058–1062. MR**954983**, 10.1090/S0002-9939-1988-0954983-6**[6]**K. R. Goodearl and R. B. Warfield Jr.,*An introduction to noncommutative Noetherian rings*, London Mathematical Society Student Texts, vol. 16, Cambridge University Press, Cambridge, 1989. MR**1020298****[7]**Timothy J. Hodges and James Osterburg,*A rank two indecomposable projective module over a Noetherian domain of Krull dimension one*, Bull. London Math. Soc.**19**(1987), no. 2, 139–144. MR**872127**, 10.1112/blms/19.2.139**[8]**Arun Vinayak Jategaonkar,*Noetherian bimodules, primary decomposition, and Jacobson’s conjecture*, J. Algebra**71**(1981), no. 2, 379–400. MR**630604**, 10.1016/0021-8693(81)90182-4**[9]**A. V. Jategaonkar,*Localization in Noetherian rings*, London Mathematical Society Lecture Note Series, vol. 98, Cambridge University Press, Cambridge, 1986. MR**839644****[10]**G. R. Krause and T. H. Lenagan,*Growth of algebras and Gel′fand-Kirillov dimension*, Research Notes in Mathematics, vol. 116, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR**781129****[11]**T. H. Lenagan,*Artinian ideals in Noetherian rings*, Proc. Amer. Math. Soc.**51**(1975), 499–500. MR**0384862**, 10.1090/S0002-9939-1975-0384862-8**[12]**T. H. Lenagan and R. B. Warfield Jr.,*Affiliated series and extensions of modules*, J. Algebra**142**(1991), no. 1, 164–187. MR**1125211**, 10.1016/0021-8693(91)90223-U**[13]**Edward Letzter,*Primitive ideals in finite extensions of Noetherian rings*, J. London Math. Soc. (2)**39**(1989), no. 3, 427–435. MR**1002455**, 10.1112/jlms/s2-39.3.427**[14]**Edward S. Letzter,*Prime ideals in finite extensions of Noetherian rings*, J. Algebra**135**(1990), no. 2, 412–439. MR**1080857**, 10.1016/0021-8693(90)90299-4**[15]**J. C. McConnell and J. C. Robson,*Noncommutative Noetherian rings*, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR**934572****[16]**Susan Montgomery,*Fixed rings of finite automorphism groups of associative rings*, Lecture Notes in Mathematics, vol. 818, Springer, Berlin, 1980. MR**590245****[17]**L. W. Small and R. B. Warfield, Jr.,*Finite extensions of rings*. II, preprint, Univ. of California, San Diego.**[18]**Laila Soueif,*Normalizing extensions and injective modules, essentially bounded normalizing extensions*, Comm. Algebra**15**(1987), no. 8, 1607–1619. MR**884764**, 10.1080/00927878708823491**[19]**Robert B. Warfield Jr.,*Bond invariance of 𝐺-rings and localization*, Proc. Amer. Math. Soc.**111**(1991), no. 1, 13–18. MR**1027102**, 10.1090/S0002-9939-1991-1027102-8

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
16P40,
16D20,
16D30

Retrieve articles in all journals with MSC: 16P40, 16D20, 16D30

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1080737-4

Keywords:
Noetherian ring,
ring extension,
Noetherian bimodule,
trace ideal,
Jacobson ring,
Krull dimension,
fully bounded ring,
second layer condition,
link,
prime ideal

Article copyright:
© Copyright 1992
American Mathematical Society