Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Isoparametric submanifolds of hyperbolic spaces


Author: Bingle Wu
Journal: Trans. Amer. Math. Soc. 331 (1992), 609-626
MSC: Primary 53C42; Secondary 57S25
DOI: https://doi.org/10.1090/S0002-9947-1992-1131078-8
MathSciNet review: 1131078
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove a decomposition theorem for isoparametric submanifolds of hyperbolic spaces. And as a consequence we obtain all polar actions on hyperbolic spaces. We also prove that any isoparametric submanifold of infinite dimensional hyperbolic space is either totally geodesic, or finite dimensional.


References [Enhancements On Off] (What's this?)

  • [Ab] U. Abresch, Isoparametric hypersurfaces with four or six distinct principal curvatures, Math. Ann. 264 (1983), 283-302. MR 714104 (85g:53052b)
  • [Be] C. T. Benson and L. C. Grove, Finite reflection groups, Bogden & Quigley, 1971. MR 0383218 (52:4099)
  • [Ca1] E. Cartan, Familles de surface isoparametrique dans les space a courbure constante, Ann. of Math. (2) 17 (1938), 177-191. MR 1553310
  • [Ca2] -, Sur des familles remarquables d'hypersurfaces isoparametriques dans les espaces spheriques, Math. Z. 45 (1939), 335-367. MR 0000169 (1:28f)
  • [Ca3] -, Sur quelques familles remarquables d'hypersurfaces, C. R. Congres. Math. Liège, 1939, pp. 30-41.
  • [Ca4] -, Sur des familles d'hypersurfaces isoparametriques des espaces spheriques a $ 5$ et a $ 9$ dimension, Univ. Nac. Tucuman Rev. Ser. A 1 (1940), 5-22.
  • [Co1] L. Conlon, A class of variationally complete representations, J. Differential Geom. 7 (1972), 149-160. MR 0377954 (51:14123)
  • [Co2] -, Variational completeness and $ K$-transversal domains, J. Differential Geom. 7 (1972), 135-147. MR 0295252 (45:4320)
  • [CR] T. E. Cecil and P. J. Ryan, Tight and taut immersions of manifolds, Research Notes in Math., vol. 107, Pitman, Boston, Mass., 1985. MR 781126 (87b:53089)
  • [CW1] S. Carter and A. West, Generalized Cartan polynomials, J. London Math. Soc. (2) 32 (1984), 305-316. MR 811789 (87h:53082)
  • [CW2] -, Isoparametric systems and transnormality, Proc. London Math. Soc. (3) 51 (1985), 520-542. MR 805720 (87d:53106)
  • [CW3] -, Isoparametric and totally focal submanifolds, Preprint, University of Leeds, 1988.
  • [Da] J. Dadok, Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc. 288 (1985), 479-502. MR 773051 (86k:22019)
  • [FKM] D. Ferus, H. Kacher and H. F. Münzner, Cliffordalgebren and neue isoparametische hyperflächen, Math. Z. 177 (1981), 479-502. MR 624227 (83k:53075)
  • [Ha] C. E. Harle, Isoparametric families of submanifolds, Bol. Soc. Brasil. Mat. 13 (1982), 35-48. MR 735118 (85g:53053)
  • [HL] W. Y. Hsiang and B. H. Lawson, Jr., Minimal submanifolds of low cohomogeneity, J. Differential Geom. 5 (1971), 1-38. MR 0298593 (45:7645)
  • [HPT] W. Y. Hsiang, R. S. Palais and C. L. Terng, The topology of isoparametric submanifolds, J. Differential Geom. 27 (1988), 423-460. MR 940113 (89m:53104)
  • [La] S. Lang, Introduction to differentiable manifolds, Interscience, New York, 1966. MR 0155257 (27:5192)
  • [Mü] H. F. Münzner, Isoparametrische hyperflächen in spharen. I, II, Math. Ann. 251 (1980), 57-71; 256 (1981), 215-232. MR 583825 (82a:53058)
  • [No] K. Nomizu, Élie Carton's work on isoparametric families of hypersurfaces, Proc. Sympos. Pure Math., vol. 27, Amer. Math. Soc., Providence, R.I., 1975, pp. 191-200. MR 0423260 (54:11240)
  • [O'N1] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469. MR 0200865 (34:751)
  • [O'N2] -, Semi-Riemannian geometry with applications to relativity, Academic Press, 1983. MR 719023 (85f:53002)
  • [OT] H. Ozeki and M. Takeuchi, On some types of isoparametric hypersurfaces in spheres. I, II, Tohoku Math. J. 27 (1975), 515-559 and 28 (1976), 7-55. MR 0454888 (56:13132a)
  • [PT1] R. S. Palais and C. L. Terng, A general canonical form theory, Trans. Amer. Math. Soc. 300 (1987), 771-789. MR 876478 (88f:57069)
  • [PT2] -, Critical point theory and submanifold geometry, Lecture Notes in Math., vol. 1353, Springer-Verlag, 1988. MR 972503 (90c:53143)
  • [Te1] C. L. Terng, Isoparametric submanifolds and their Coxeter groups, J. Differential Geom. 21 (1985), 79-107. MR 806704 (87e:53095)
  • [Te2] -, Convexity theorem for isoparametric submanifolds, Invent. Math. 85 (1986), 487-492. MR 848682 (87j:53092)
  • [Te3] -, Submanifolds with flat normal bundle, Math. Ann. 277 (1987), 95-111. MR 884648 (88e:53093)
  • [Te4] -, Proper Fredholm submanifolds of Hilbert space, J. Differential Geom. 29 (1989), 9-47. MR 978074 (90e:58006)
  • [Th] G. Thorbergsson, Isoparametric foliations and their buildings, preprint. MR 1097244 (92d:53053)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C42, 57S25

Retrieve articles in all journals with MSC: 53C42, 57S25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1131078-8
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society