Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

Orbits in unimodular Hermitian lattices


Author: Donald G. James
Journal: Trans. Amer. Math. Soc. 332 (1992), 849-860
MSC: Primary 11E39; Secondary 11E08, 11H06, 20G25, 20G30
MathSciNet review: 1089419
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ L$ be a unimodular indefinite hermitian lattice over the integers $ \mathfrak{o}$ of an algebraic number field, and $ N(L,c)$ the number of primitive representations of $ c \in \mathfrak{o}$ by $ L$ that are inequalivant modulo the action of the integral special unitary group $ SU(L)$ on $ L$. The value of $ N(L,c)$ is determined from the local representations via a product formula.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11E39, 11E08, 11H06, 20G25, 20G30

Retrieve articles in all journals with MSC: 11E39, 11E08, 11H06, 20G25, 20G30


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1992-1089419-6
PII: S 0002-9947(1992)1089419-6
Keywords: Unimodular hermitian forms, algebraic integers, integral representations, unitary group, orbits, local fields, cyclotomic fields
Article copyright: © Copyright 1992 American Mathematical Society