Generalized second-order derivatives of convex functions in reflexive Banach spaces

Author:
Chi Ngoc Do

Journal:
Trans. Amer. Math. Soc. **334** (1992), 281-301

MSC:
Primary 49J52; Secondary 46G05

MathSciNet review:
1088019

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Generalized second-order derivatives introduced by Rockafellar in finite-dimensional spaces are extended to convex functions in reflexive Banach spaces. Parallel results are shown in the infinite-dimensional case. A result that plays an important role in applications is that the generalized second-order differentiability is preserved under the integral sign.

**[1]**H. Attouch,*Variational convergence for functions and operators*, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR**773850****[2]**Dominique Azé, Hédy Attouch, and Roger J.-B. Wets,*Convergence of convex-concave saddle functions: applications to convex programming and mechanics*, Ann. Inst. H. Poincaré Anal. Non Linéaire**5**(1988), no. 6, 537–572 (English, with French summary). MR**978671****[3]**A. Ben-Tal and J. Zowe,*Necessary and sufficient optimality conditions for a class of nonsmooth minimization problems*, Math. Programming**24**(1982), no. 1, 70–91. MR**667940**, 10.1007/BF01585095**[4]**R. W. Chaney,*Second-order sufficiency conditions for nondifferentiable programming problems*, SIAM J. Control Optim.**20**(1982), no. 1, 20–33. MR**642177**, 10.1137/0320004**[5]**Frank H. Clarke,*Optimization and nonsmooth analysis*, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. A Wiley-Interscience Publication. MR**709590****[6]**Chi N. Do,*Second-order nonsmooth analysis and sensitivity in optimization problems involving convex integral functionals*, PhD. Thesis, Univ. of Washington, 1989.**[7]**-,*Sensitivity analysis in optimal control problems with convex costs*, preprint.**[8]**A. Haraux,*How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities*, J. Math. Soc. Japan**29**(1977), no. 4, 615–631. MR**0481060****[9]**J.-B. Hiriart-Urruty,*Calculus rules on the approximate second-order directional derivative of a convex function*, SIAM J. Control Optim.**22**(1984), no. 3, 381–404. MR**739833**, 10.1137/0322025**[10]**Jean-Luc Joly and François de Thelin,*Convergence of convex integrals in \cal𝐿^{𝑝} spaces*, J. Math. Anal. Appl.**54**(1976), no. 1, 230–244. MR**0412928****[11]**J. L. Ndoutoume,*Calcul différentiel généralisé du second ordre*, preprint.**[12]**Robert R. Phelps,*Convex functions, monotone operators and differentiability*, Lecture Notes in Mathematics, vol. 1364, Springer-Verlag, Berlin, 1989. MR**984602****[13]**R. T. Rockafellar,*First- and second-order epi-differentiability in nonlinear programming*, Trans. Amer. Math. Soc.**307**(1988), no. 1, 75–108. MR**936806**, 10.1090/S0002-9947-1988-0936806-9**[14]**R. T. Rockafellar,*Generalized second derivatives of convex functions and saddle functions*, Trans. Amer. Math. Soc.**322**(1990), no. 1, 51–77. MR**1031242**, 10.1090/S0002-9947-1990-1031242-0**[15]**R. Tyrrell Rockafellar,*Integral functionals, normal integrands and measurable selections*, Nonlinear operators and the calculus of variations (Summer School, Univ. Libre Bruxelles, Brussels, 1975) Springer, Berlin, 1976, pp. 157–207. Lecture Notes in Math., Vol. 543. MR**0512209****[16]**R. T. Rockafellar,*Proto-differentiability of set-valued mappings and its applications in optimization*, Ann. Inst. H. Poincaré Anal. Non Linéaire**6**(1989), no. suppl., 449–482. Analyse non linéaire (Perpignan, 1987). MR**1019126****[17]**R. Tyrrell Rockafellar,*Second-order optimality conditions in nonlinear programming obtained by way of epi-derivatives*, Math. Oper. Res.**14**(1989), no. 3, 462–484. MR**1008425**, 10.1287/moor.14.3.462**[18]**Gabriella Salinetti and Roger J.-B. Wets,*Convergence of sequences of closed sets*, The Proceedings of the 1979 Topology Conference (Ohio Univ., Athens, Ohio, 1979), 1979, pp. 149–158 (1980). MR**583698****[19]**Gabriella Salinetti and Roger J.-B. Wets,*On the convergence of sequences of convex sets in finite dimensions*, SIAM Rev.**21**(1979), no. 1, 18–33. MR**516381**, 10.1137/1021002**[20]**Alberto Seeger,*Second order directional derivatives in parametric optimization problems*, Math. Oper. Res.**13**(1988), no. 1, 124–139. MR**931491**, 10.1287/moor.13.1.124**[21]**Jan Sokołowski,*Differential stability of solutions to constrained optimization problems*, Appl. Math. Optim.**13**(1985), no. 2, 97–115. MR**794173**, 10.1007/BF01442201**[22]**Eduardo H. Zarantonello,*Projections on convex sets in Hilbert space and spectral theory. I. Projections on convex sets*, Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971) Academic Press, New York, 1971, pp. 237–341. MR**0388177**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
49J52,
46G05

Retrieve articles in all journals with MSC: 49J52, 46G05

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1992-1088019-1

Keywords:
Generalized second-order derivatives,
epi-convergence,
Mosco convergence,
epi-derivatives,
proto-derivatives,
integral functionals,
normal integrands

Article copyright:
© Copyright 1992
American Mathematical Society