Generalized secondorder derivatives of convex functions in reflexive Banach spaces
Author:
Chi Ngoc Do
Journal:
Trans. Amer. Math. Soc. 334 (1992), 281301
MSC:
Primary 49J52; Secondary 46G05
MathSciNet review:
1088019
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Generalized secondorder derivatives introduced by Rockafellar in finitedimensional spaces are extended to convex functions in reflexive Banach spaces. Parallel results are shown in the infinitedimensional case. A result that plays an important role in applications is that the generalized secondorder differentiability is preserved under the integral sign.
 [1]
H.
Attouch, Variational convergence for functions and operators,
Applicable Mathematics Series, Pitman (Advanced Publishing Program),
Boston, MA, 1984. MR 773850
(86f:49002)
 [2]
Dominique
Azé, Hédy
Attouch, and Roger
J.B. Wets, Convergence of convexconcave saddle functions:
applications to convex programming and mechanics, Ann. Inst. H.
Poincaré Anal. Non Linéaire 5 (1988),
no. 6, 537–572 (English, with French summary). MR 978671
(90g:90118)
 [3]
A.
BenTal and J.
Zowe, Necessary and sufficient optimality conditions for a class of
nonsmooth minimization problems, Math. Programming 24
(1982), no. 1, 70–91. MR 667940
(83m:90075), http://dx.doi.org/10.1007/BF01585095
 [4]
R.
W. Chaney, Secondorder sufficiency conditions for
nondifferentiable programming problems, SIAM J. Control Optim.
20 (1982), no. 1, 20–33. MR 642177
(83j:90077), http://dx.doi.org/10.1137/0320004
 [5]
Frank
H. Clarke, Optimization and nonsmooth analysis, Canadian
Mathematical Society Series of Monographs and Advanced Texts, John Wiley
& Sons, Inc., New York, 1983. A WileyInterscience Publication. MR 709590
(85m:49002)
 [6]
Chi N. Do, Secondorder nonsmooth analysis and sensitivity in optimization problems involving convex integral functionals, PhD. Thesis, Univ. of Washington, 1989.
 [7]
, Sensitivity analysis in optimal control problems with convex costs, preprint.
 [8]
A.
Haraux, How to differentiate the projection on a convex set in
Hilbert space. Some applications to variational inequalities, J. Math.
Soc. Japan 29 (1977), no. 4, 615–631. MR 0481060
(58 #1207)
 [9]
J.B.
HiriartUrruty, Calculus rules on the approximate secondorder
directional derivative of a convex function, SIAM J. Control Optim.
22 (1984), no. 3, 381–404. MR 739833
(85i:49023), http://dx.doi.org/10.1137/0322025
 [10]
JeanLuc
Joly and François
de Thelin, Convergence of convex integrals in
\cal𝐿^{𝑝} spaces, J. Math. Anal. Appl.
54 (1976), no. 1, 230–244. MR 0412928
(54 #1049)
 [11]
J. L. Ndoutoume, Calcul différentiel généralisé du second ordre, preprint.
 [12]
Robert
R. Phelps, Convex functions, monotone operators and
differentiability, Lecture Notes in Mathematics, vol. 1364,
SpringerVerlag, Berlin, 1989. MR 984602
(90g:46063)
 [13]
R.
T. Rockafellar, First and secondorder
epidifferentiability in nonlinear programming, Trans. Amer. Math. Soc. 307 (1988), no. 1, 75–108. MR 936806
(90a:90216), http://dx.doi.org/10.1090/S00029947198809368069
 [14]
R.
T. Rockafellar, Generalized second derivatives of
convex functions and saddle functions, Trans.
Amer. Math. Soc. 322 (1990), no. 1, 51–77. MR 1031242
(91b:90190), http://dx.doi.org/10.1090/S00029947199010312420
 [15]
R.
Tyrrell Rockafellar, Integral functionals, normal integrands and
measurable selections, Nonlinear operators and the calculus of
variations (Summer School, Univ. Libre Bruxelles, Brussels, 1975)
Springer, Berlin, 1976, pp. 157–207. Lecture Notes in Math.,
Vol. 543. MR
0512209 (58 #23598)
 [16]
R.
T. Rockafellar, Protodifferentiability of setvalued mappings and
its applications in optimization, Ann. Inst. H. Poincaré Anal.
Non Linéaire 6 (1989), no. suppl.,
449–482. Analyse non linéaire (Perpignan, 1987). MR 1019126
(90k:90140)
 [17]
R.
Tyrrell Rockafellar, Secondorder optimality conditions in
nonlinear programming obtained by way of epiderivatives, Math. Oper.
Res. 14 (1989), no. 3, 462–484. MR 1008425
(91b:49022), http://dx.doi.org/10.1287/moor.14.3.462
 [18]
Gabriella
Salinetti and Roger
J.B. Wets, Convergence of sequences of closed sets, The
Proceedings of the 1979 Topology Conference (Ohio Univ., Athens, Ohio,
1979), 1979, pp. 149–158 (1980). MR 583698
(81j:54015)
 [19]
Gabriella
Salinetti and Roger
J.B. Wets, On the convergence of sequences of convex sets in
finite dimensions, SIAM Rev. 21 (1979), no. 1,
18–33. MR
516381 (80h:52007), http://dx.doi.org/10.1137/1021002
 [20]
Alberto
Seeger, Second order directional derivatives in parametric
optimization problems, Math. Oper. Res. 13 (1988),
no. 1, 124–139. MR 931491
(89d:90217), http://dx.doi.org/10.1287/moor.13.1.124
 [21]
Jan
Sokołowski, Differential stability of solutions to
constrained optimization problems, Appl. Math. Optim.
13 (1985), no. 2, 97–115. MR 794173
(87i:49050), http://dx.doi.org/10.1007/BF01442201
 [22]
Eduardo
H. Zarantonello, Projections on convex sets in Hilbert space and
spectral theory. I. Projections on convex sets, Contributions to
nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ.
Wisconsin, Madison, Wis., 1971) Academic Press, New York, 1971,
pp. 237–341. MR 0388177
(52 #9014)
 [1]
 H. Attouch, Variational convergence for functions and operators, Pitman, London, 1984 MR 773850 (86f:49002)
 [2]
 H. Attouch, D. Azé and R. J.B. Wets, Convergence of convexconcave saddle functions: continuity properties of the LegendreFenchel transform. Applications to convex programming and mechanics, Ann. Inst. Henri Poincaré 5 (1988), 537572. MR 978671 (90g:90118)
 [3]
 A. BenTal and J. Zowe, Necessary and sufficient conditions for a class of nonsmooth minimization problems, Math. Programming 24 (1982), 7091. MR 667940 (83m:90075)
 [4]
 R. W. Chaney, Secondorder sufficient conditions for nondifferentiable programming problems, SIAM J. Control Optim. 20 (1982), 2033. MR 642177 (83j:90077)
 [5]
 F. Clarke, Optimization and nonsmooth analysis, Wiley , New York, 1983. MR 709590 (85m:49002)
 [6]
 Chi N. Do, Secondorder nonsmooth analysis and sensitivity in optimization problems involving convex integral functionals, PhD. Thesis, Univ. of Washington, 1989.
 [7]
 , Sensitivity analysis in optimal control problems with convex costs, preprint.
 [8]
 A. Haraux, How to differentiate the projection on a convex set in Hilbert space: some applications to variational inequalities, J. Math. Soc. Japan 29 (1977), 615631. MR 0481060 (58:1207)
 [9]
 J.B. HiriartUrruty, Calculus rules on the approximate secondorder directional derivative of a convex function, SIAM J. Control Optim. 22 (1984), 381404. MR 739833 (85i:49023)
 [10]
 JeanLuc Joly and François de Thelin, Convergence of convex integrals in spaces, J. Math. Anal. Appl. 54 (1976), 230244. MR 0412928 (54:1049)
 [11]
 J. L. Ndoutoume, Calcul différentiel généralisé du second ordre, preprint.
 [12]
 R. Phelps, Convex functions, monotone operators and differentiability, SpringerVerlag, 1989. MR 984602 (90g:46063)
 [13]
 R. T. Rockafellar, First and secondorder epidifferentiability in nonlinear programming, Trans. Amer. Math. Soc. 307 (1988), 75108. MR 936806 (90a:90216)
 [14]
 , Generalized second derivatives of convex functions and saddle functions, Trans. Amer. Math. Soc. 28 (1990), 810822. MR 1031242 (91b:90190)
 [15]
 , Integral functionals, normal integrands and measurable selections, Nonlinear Operators and the Calculus of Variations, SpringerVerlag, 1976, pp. 157207. MR 0512209 (58:23598)
 [16]
 , Protodifferentiability of setvalued mappings and its applications in optimization, Analyse Non Linéaire (H. Attouch et al., eds.), GauthierVillars, Paris, 1989, pp. 449482. MR 1019126 (90k:90140)
 [17]
 , Secondorder optimality condition in nonlinear programming obtained by way of epiderivatives, Math. Oper. Res. 14 (1989), 462484. MR 1008425 (91b:49022)
 [18]
 G. Salinetti and R. J.B. Wets, Convergence of sequences of closed sets, Topology Proc. 4 (1979), 149157. MR 583698 (81j:54015)
 [19]
 , On the convergence of sequences of convex sets in finite dimensions, SIAM Rev. 21 (1979), 1833. MR 516381 (80h:52007)
 [20]
 A. Seeger, Secondorder directional derivatives in parametric optimization problems, preprint. MR 931491 (89d:90217)
 [21]
 J. Sokolowski, Differential stability of solutions to constrained optimization problems, Appl. math. Optim., SpringerVerlag, 1985, pp. 97115. MR 794173 (87i:49050)
 [22]
 E. H. Zarantonello, Projections on convex sets in Hilbert space and spectral theory, Contributions to Nonlinear Functional Analysis, 1971, pp. 237424. MR 0388177 (52:9014)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
49J52,
46G05
Retrieve articles in all journals
with MSC:
49J52,
46G05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947199210880191
PII:
S 00029947(1992)10880191
Keywords:
Generalized secondorder derivatives,
epiconvergence,
Mosco convergence,
epiderivatives,
protoderivatives,
integral functionals,
normal integrands
Article copyright:
© Copyright 1992
American Mathematical Society
