Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Fundamental solutions for hypoelliptic differential operators depending analytically on a parameter


Author: Frank Mantlik
Journal: Trans. Amer. Math. Soc. 334 (1992), 245-257
MSC: Primary 35H05; Secondary 35B30
MathSciNet review: 1107027
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ P(\lambda ,D) = \sum\nolimits_{\vert\alpha \vert \leq m} {{a_\alpha }(\lambda ){D^\alpha }} $ be a differential operator with constant coefficients $ {a_\alpha }$ depending analytically on a parameter $ \lambda $. Assume that each $ P(\lambda ,D)$ is hypoelliptic and that the strength of $ P(\lambda ,D)$ is independent of $ \lambda $. Under this condition we show that there exists a regular fundamental solution of $ P(\lambda ,D)$ which also depends analytically on $ \lambda $.


References [Enhancements On Off] (What's this?)

  • [1] Hans Grauert, On Levi’s problem and the imbedding of real-analytic manifolds, Ann. of Math. (2) 68 (1958), 460–472. MR 0098847
  • [2] Lars Hörmander, On the division of distributions by polynomials, Ark. Mat. 3 (1958), 555–568. MR 0124734
  • [3] Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0203075
  • [4] Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035
  • [5] Hans Jarchow, Locally convex spaces, B. G. Teubner, Stuttgart, 1981. Mathematische Leitfäden. [Mathematical Textbooks]. MR 632257
  • [6] Jürgen Leiterer, Banach coherent analytic Fréchet sheaves, Math. Nachr. 85 (1978), 91–109. MR 517643, 10.1002/mana.19780850108
  • [7] S. Łojasiewicz, Sur le problème de la division, Studia Math. 18 (1959), 87–136 (French). MR 0107168
  • [8] I. I. Priwalow, Randeigenschaften analytischer Funktionen, Zweite, unter Redaktion von A. I. Markuschewitsch überarbeitete und ergänzte Auflage. Hochschulbücher für Mathematik, Bd. 25, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956 (German). MR 0083565
  • [9] François Trèves, Opérateurs différentiels hypoelliptiques, Ann. Inst. Fourier. Grenoble 9 (1959), 1–73 (French). MR 0114056
  • [10] -, Un théorème sur les équations aux dérivées partielles à coefficients constants dépendant de paramètres, Bull. Soc. Math. France 90 (1962), 473-486.
  • [11] François Trèves, Fundamental solutions of linear partial differential equations with constant coefficients depending on parameters, Amer. J. Math. 84 (1962), 561–577. MR 0149084

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35H05, 35B30

Retrieve articles in all journals with MSC: 35H05, 35B30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1107027-5
Keywords: Hypoelliptic operators, fundamental solutions, analytic parameterdependence
Article copyright: © Copyright 1992 American Mathematical Society