Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Hypoellipticity on Cauchy-Riemann manifolds

Author: Johannes A. Petersen
Journal: Trans. Amer. Math. Soc. 334 (1992), 615-639
MSC: Primary 32F20; Secondary 32F40, 35H05
MathSciNet review: 1113696
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using a recent homotopy formula by Trèves, it is shown that the existence of $ (q + 1)$-dimensional holomorphic supporting manifolds is a sufficient condition for the hypoellipticity on level $ q$ and $ n - q$ of a tangential Cauchy-Riemann complex of $ {\text{CR}}$-dimension $ n$. In the hypersurface case, this result is given microlocally.

References [Enhancements On Off] (What's this?)

  • [AHe] R. A. Airapetyan and G. M. Henkin, Integral representations of differential forms on Cauchy-Riemannn manifolds and the theory of $ CR$-functions, Uspekhi Mat. Nauk 39:3 (1984), 39-106; English transl., Russian Math. Surveys 39:3 (1984), 41-118. MR 747791 (86b:32003)
  • [AH] A. Andreotti and C. D. Hill, E. E. Levi convexity and the Hans Lewy problem, Ann. Scuola Norm. Sup. Pisa 26 (1972), 325-363 and 747-806.
  • [FS] G. B. Folland and E. M. Stein, Estimates for the $ {\overline \partial _b}$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429-522. MR 0367477 (51:3719)
  • [He] G. M. Henkin, The Lewy equation and analysis on pseudoconvex manifolds, Russian Math. Surveys 32:3 (1977), 59-13. MR 0454067 (56:12318)
  • [H1] L. Hörmander, Pseudodifferential operators and non-elliptic boundary problems, Ann. of Math. (2) 83 (1966), 129-209.
  • [H2] -, The analysis of linear partial differential operators. I, Springer, 1983. MR 717035 (85g:35002a)
  • [KN] J. J. Kohn and L. Nirenberg, A pseudoconvex domain not admitting a holomorphic support function, Math. Ann. 201 (1973), 265-268. MR 0330513 (48:8850)
  • [M] H.-M. Maire, Necessary and sufficient conditions for maximal hypoellipticity of $ {\bar \partial _b}$, Lecture Notes in Math., vol. 1324, Springer, 1988, pp. 178-185. MR 965534 (89k:35055)
  • [NR] A. Nagel and J.-P. Rosay, Approximate local solutions of $ {\bar \partial _b}$, but nonexistence of homotopy formula, for $ (0,1)$-forms on hypersurfaces in $ {{\mathbf{C}}^n}$, Duke Math. J. 58 (1989), 823-827. MR 1016447 (90m:32040)
  • [P] Jl. A. Petersen, On the hypoellipticity of the tangential Cauchy-Riemann operator, Thesis, Rutgers Univ., May 1990.
  • [T1] François Trèves, Pseudodifferential and Fourier integral operators, Plenum Press, 1980. MR 597145 (82i:58068)
  • [T2] -, Hypoanalytic structures, Contemp. Math. 27 (1984), 23-44. MR 741037 (85e:32024)
  • [T3] -, Homotopy formulas in the tangential Cauchy-Riemann complex, Mem. Amer. Math. Soc., vol. 87 (1990), no. 434. MR 1028234 (90m:32012)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32F20, 32F40, 35H05

Retrieve articles in all journals with MSC: 32F20, 32F40, 35H05

Additional Information

Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society