Generation and propagation of interfaces in reaction-diffusion systems

Author:
Xinfu Chen

Journal:
Trans. Amer. Math. Soc. **334** (1992), 877-913

MSC:
Primary 35R35; Secondary 35K57

MathSciNet review:
1144013

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with the asymptotic behavior, as , of the solution of the second initial-boundary value problem of the reaction-diffusion system:

**[1]**S. Allen and J. Cahn,*A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsing*, Acta Metall.**27**(1979), 1084-1095.**[2]**D. G. Aronson and H. F. Weinberger,*Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation*, Partial differential equations and related topics (Program, Tulane Univ., New Orleans, La., 1974) Springer, Berlin, 1975, pp. 5–49. Lecture Notes in Math., Vol. 446. MR**0427837****[3]**D. G. Aronson and H. F. Weinberger,*Multidimensional nonlinear diffusion arising in population genetics*, Adv. in Math.**30**(1978), no. 1, 33–76. MR**511740**, 10.1016/0001-8708(78)90130-5**[4]**G. Barles,*Remarks on a flame propagation model*, Rapport INRIA, #464, 1985.**[5]**Lia Bronsard and Robert V. Kohn,*Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics*, J. Differential Equations**90**(1991), no. 2, 211–237. MR**1101239**, 10.1016/0022-0396(91)90147-2**[6]**Lia Bronsard and Robert V. Kohn,*On the slowness of phase boundary motion in one space dimension*, Comm. Pure Appl. Math.**43**(1990), no. 8, 983–997. MR**1075075**, 10.1002/cpa.3160430804**[7]**J. Carr and R. L. Pego,*Very slow phase separation in one dimension*, PDEs and continuum models of phase transitions (Nice, 1988) Lecture Notes in Phys., vol. 344, Springer, Berlin, 1989, pp. 216–226. MR**1036071**, 10.1007/BFb0024946**[8]**Jack Carr and Robert Pego,*Invariant manifolds for metastable patterns in 𝑢_{𝑡}=𝜀²𝑢ₓₓ-𝑓(𝑢)*, Proc. Roy. Soc. Edinburgh Sect. A**116**(1990), no. 1-2, 133–160. MR**1076358**, 10.1017/S0308210500031425**[9]**Xinfu Chen,*Generation and propagation of interfaces for reaction-diffusion equations*, J. Differential Equations**96**(1992), no. 1, 116–141. MR**1153311**, 10.1016/0022-0396(92)90146-E**[10]**Xu-Yan Chen,*Dynamics of interfaces in reaction diffusion systems*, Hiroshima Math. J.**21**(1991), no. 1, 47–83. MR**1091432****[11]**Yun Gang Chen, Yoshikazu Giga, and Shun’ichi Goto,*Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations*, J. Differential Geom.**33**(1991), no. 3, 749–786. MR**1100211****[12]**R. Courant and D. Hilbert,*Methods of mathematical physics. Vol. II*, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1989. Partial differential equations; Reprint of the 1962 original; A Wiley-Interscience Publication. MR**1013360****[13]**M. G. Crandall, L. C. Evans, and P.-L. Lions,*Some properties of viscosity solutions of Hamilton-Jacobi equations*, Trans. Amer. Math. Soc.**282**(1984), no. 2, 487–502. MR**732102**, 10.1090/S0002-9947-1984-0732102-X**[14]**Piero de Mottoni and Michelle Schatzman,*Évolution géométrique d’interfaces*, C. R. Acad. Sci. Paris Sér. I Math.**309**(1989), no. 7, 453–458 (French, with English summary). MR**1055457****[15]**-,*Development of interfaces in*, preprint.**[16]**L. C. Evans, H. M. Soner, and P. E. Souganidis,*The Allen-Cahn equation and the generalized motion by mean curvature*, preprint.**[17]**L. C. Evans and J. Spruck,*Motion of level sets by mean curvature. I*, J. Differential Geom.**33**(1991), no. 3, 635–681. MR**1100206****[18]**Paul C. Fife,*Dynamics of internal layers and diffusive interfaces*, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 53, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. MR**981594****[19]**Paul C. Fife and Ling Hsiao,*The generation and propagation of internal layers*, Nonlinear Anal.**12**(1988), no. 1, 19–41. MR**924750**, 10.1016/0362-546X(88)90010-7**[20]**Paul C. Fife and J. B. McLeod,*The approach of solutions of nonlinear diffusion equations to travelling front solutions*, Arch. Ration. Mech. Anal.**65**(1977), no. 4, 335–361. MR**0442480****[21]**John J. Tyson and Paul C. Fife,*Target patterns in a realistic model of the Belousov-Zhabotinskii reaction*, J. Chem. Phys.**73**(1980), no. 5, 2224–2237. MR**583644**, 10.1063/1.440418**[22]**Avner Friedman,*Partial differential equations of parabolic type*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR**0181836****[23]**G. Fusco,*A geometric approach to the dynamics of 𝑢_{𝑡}=𝜀²𝑢ₓₓ+𝑓(𝑢) for small 𝜀*, Problems involving change of type (Stuttgart, 1988) Lecture Notes in Phys., vol. 359, Springer, Berlin, 1990, pp. 53–73. MR**1062209**, 10.1007/3-540-52595-5_85**[24]**G. Fusco and J. K. Hale,*Slow-motion manifolds, dormant instability, and singular perturbations*, J. Dynam. Differential Equations**1**(1989), no. 1, 75–94. MR**1010961**, 10.1007/BF01048791**[25]**Y. Giga, S. Goto, and H. Ishii,*Global existence of weak solutions for interface equations coupled with diffusion equations, IMA Preprint*#806, University of Minnesota, 1991.**[26]**D. Hilhorst, Y. Nishiura, and M. Mimura,*A free boundary problem arising from reaction-diffusion system*, preprint, 1990.**[27]**O. A. Ladyzhenskaja, V. A. Solonnikov, and N. N. Ural'ceva,*Linear and quasilinear equations of parabolic type*, Amer. Math. Soc., Providence, R.I., 1968.**[28]**T. Ohta, M. Mimura, and R. Kobayashi,*Higher-dimensional localized patterns in excitable media*, Phys. D**34**(1989), no. 1-2, 115–144. MR**982383**, 10.1016/0167-2789(89)90230-3**[29]**Stanley Osher and James A. Sethian,*Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations*, J. Comput. Phys.**79**(1988), no. 1, 12–49. MR**965860**, 10.1016/0021-9991(88)90002-2**[30]**Jacob Rubinstein, Peter Sternberg, and Joseph B. Keller,*Fast reaction, slow diffusion, and curve shortening*, SIAM J. Appl. Math.**49**(1989), no. 1, 116–133. MR**978829**, 10.1137/0149007**[31]**Joel Smoller,*Shock waves and reaction-diffusion equations*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York, 1994. MR**1301779****[32]**J. A. Sethian,*Curvature and the evolution of fronts*, Comm. Math. Phys.**101**(1985), no. 4, 487–499. MR**815197**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35R35,
35K57

Retrieve articles in all journals with MSC: 35R35, 35K57

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1144013-3

Keywords:
Reaction-diffusion systems,
generation of interface,
propagation of interface

Article copyright:
© Copyright 1992
American Mathematical Society