Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Rational approximations to the dilogarithm


Author: Masayoshi Hata
Journal: Trans. Amer. Math. Soc. 336 (1993), 363-387
MSC: Primary 11J82; Secondary 11J72
MathSciNet review: 1147401
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The irrationality proof of the values of the dilogarithmic function $ {L_2}(z)$ at rational points $ z = 1/k$ for every integer $ k \in ( - \infty , - 5] \cup [7,\infty )$ is given. To show this we develop the method of Padé-type approximations using Legendre-type polynomials, which also derives good irrationality measures of $ {L_2}(1/k)$. Moreover, the linear independence over $ {\mathbf{Q}}$ of the numbers $ 1$, $ \log (1 - 1/k)$, and $ {L_2}(1/k)$ is also obtained for each integer $ k \in ( - \infty , - 5] \cup [7,\infty )$ .


References [Enhancements On Off] (What's this?)

  • [1] F. Beukers, A note on the irrationality of 𝜁(2) and 𝜁(3), Bull. London Math. Soc. 11 (1979), no. 3, 268–272. MR 554391, 10.1112/blms/11.3.268
  • [2] G. V. Chudnovsky, Padé approximations to the generalized hypergeometric functions. I, J. Math. Pures Appl. (9) 58 (1979), no. 4, 445–476. MR 566655
  • [3] G. V. Chudnovsky, Measures of irrationality, transcendence and algebraic independence. Recent progress, Number theory days, 1980 (Exeter, 1980) London Math. Soc. Lecture Note Ser., vol. 56, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 11–82. MR 697257
  • [4] D. V. Chudnovsky and G. V. Chudnovsky, Padé and rational approximations to systems of functions and their arithmetic applications, Number theory (New York, 1982) Lecture Notes in Math., vol. 1052, Springer, Berlin, 1984, pp. 37–84. MR 750662, 10.1007/BFb0071540
  • [5] R. Dvornicich and C. Viola, Some remarks on Beukers’ integrals, Number theory, Vol. II (Budapest, 1987) Colloq. Math. Soc. János Bolyai, vol. 51, North-Holland, Amsterdam, 1990, pp. 637–657. MR 1058238
  • [6] A. Erdélyi et al., Higher transcendental functions, vol. 1, McGraw-Hill, New York, 1953.
  • [7] Masayoshi Hata, Legendre type polynomials and irrationality measures, J. Reine Angew. Math. 407 (1990), 99–125. MR 1048530, 10.1515/crll.1990.407.99
  • [8] Masayoshi Hata, On the linear independence of the values of polylogarithmic functions, J. Math. Pures Appl. (9) 69 (1990), no. 2, 133–173. MR 1067449
  • [9] Leonard Lewin, Polylogarithms and associated functions, North-Holland Publishing Co., New York-Amsterdam, 1981. With a foreword by A. J. Van der Poorten. MR 618278
  • [10] W. Maier, Potenzreihen irrationalen Grenzwertes, J. Reine Angew. Math. 156 (1927), 93-148.
  • [11] Alfred van der Poorten, A proof that Euler missed…Apéry’s proof of the irrationality of 𝜁(3), Math. Intelligencer 1 (1978/79), no. 4, 195–203. An informal report. MR 547748, 10.1007/BF03028234
  • [12] E. A. Rukhadze, A lower bound for the approximation of 𝑙𝑛2 by rational numbers, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 6 (1987), 25–29, 97 (Russian). MR 922879

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11J82, 11J72

Retrieve articles in all journals with MSC: 11J82, 11J72


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1993-1147401-5
Keywords: Dilogarithm, irrationality measure, Padé approximation
Article copyright: © Copyright 1993 American Mathematical Society