Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Topological properties of $ q$-convex sets


Author: Guido Lupacciolu
Journal: Trans. Amer. Math. Soc. 337 (1993), 427-435
MSC: Primary 32F10; Secondary 32E20
DOI: https://doi.org/10.1090/S0002-9947-1993-1091708-7
MathSciNet review: 1091708
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss the topological properties of a certain class of compact sets in a $ q$-complete complex manifold $ M$. These sets--which we call $ q$-convex in $ M$--include, for $ q = 0$, the $ \mathcal{O}(M)$-convex compact sets in a Stein manifold. Then we show applications of the topological results to the subjects of removable singularities for $ {\bar \partial _b}$.


References [Enhancements On Off] (What's this?)

  • [1] L. A. Aĭzenberg and Sh. Dautov, Differential forms orthogonal to holomorphic functions or forms, and their properties, "Nauka", Novosibirsk, 1975; English transl., Amer. Math. Soc., Providence, R.I., 1983. MR 700397 (84e:32005)
  • [2] H. Alexander, A note on polynomial hulls, Proc. Amer. Math. Soc. 33 (1972), 389-391. MR 0294689 (45:3757)
  • [3] H. Alexander and E. L. Stout, A note on hulls, Bull. London Math. Soc. (3) 22 (1990), 258-260. MR 1041140 (91b:32015)
  • [4] A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259. MR 0150342 (27:343)
  • [5] R. F. Basener, Complementary components of polynomial hulls, Proc. Amer. Math. Soc. 69 (1978), 230-232. MR 0466626 (57:6503)
  • [6] A. Browder, Cohomology of maximal ideal spaces, Bull. Amer. Math. Soc. 67 (1961), 515-516. MR 0130580 (24:A440)
  • [7] A. Dold, Lectures on algebraic topology, Springer-Verlag, Berlin, Heidelberg and New York, 1972. MR 0415602 (54:3685)
  • [8] R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1973. MR 0345092 (49:9831)
  • [9] R. E. Greene and H. Wu, Whitney's imbedding theorem by solutions of elliptic equations and geometric consequences, Proc. Sympos. Pure Math., vol. 27, Part 2, Amer. Math. Soc., Providence, R.I., 1975, pp. 287-296. MR 0407908 (53:11678)
  • [10] A. Grothendieck, Topological vector spaces, Gordon and Breach, New York, London and Paris, 1973. MR 0372565 (51:8772)
  • [11] G. M. Henkin and J. Leiterer, Andreotti-Grauert theory by integral formulas, Akademie-Verlag, Berlin, 1988. MR 968893 (90h:32002a)
  • [12] L. Hörmander, An introduction to complex analysis in several variables, North-Holland, Amsterdam, 1973.
  • [13] G. Lupacciolu, Some global results on extension of $ CR$-objects in complex manifolds, Trans. Amer. Math. Soc. 321 (1990), 761-774. MR 979962 (92i:32019)
  • [14] -, A theorem on holomorphic extension of $ CR$-functions, Pacific J. Math. 124 (1986), 177-191. MR 850675 (87k:32026)
  • [15] J. P. Rosay and E. L. Stout, Radò's theorem for $ CR$-functions, Proc. Amer. Math. Soc. 106 (1989), 1017-1026. MR 964461 (89m:32028)
  • [16] J. P. Serre, Une propriété topologique des domaines de Runge, Proc. Amer. Math. Soc. 6 (1955), 133-134. MR 0067488 (16:736c)
  • [17] A. Silva, A $ n$-Runge approximation theorem, Boll. Un. Mat. Ital. 8 (1973), 286-289. MR 0346192 (49:10918)
  • [18] -, Behnke-Stein theorem for analytic spaces, Trans. Amer. Math. Soc. 199 (1974), 317-326. MR 0367286 (51:3528)
  • [19] G. Sorani, Homologie des $ q$-paires de Runge, Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 319-332. MR 0165143 (29:2432)
  • [20] G. Sorani and V. Villani, $ q$-complete spaces and cohomology, Trans. Amer. Math. Soc. 125 (1966), 432-448. MR 0206335 (34:6154)
  • [21] B. M. Weinstock, An approximation theorem for $ \bar \partial $-closed forms of type $ (n,n - 1)$, Proc. Amer. Math. Soc. 26 (1970), 625-628. MR 0265638 (42:547)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32F10, 32E20

Retrieve articles in all journals with MSC: 32F10, 32E20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1091708-7
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society