Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Computing the equations of a variety

Authors: Michela Brundu and Mike Stillman
Journal: Trans. Amer. Math. Soc. 337 (1993), 677-690
MSC: Primary 13P10; Secondary 13A30, 13D45, 14B15
MathSciNet review: 1091704
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X \subset {\mathbb{P}^n}$ be a projective variety or subscheme, and let $ \mathcal{F}$ be an invertible sheaf on $ X$. A set of global sections of $ \mathcal{F}$ determines a map from a Zariski open subset of $ X$ to $ {\mathbb{P}^r}$. The purpose of this paper is to find, given $ X$ and $ \mathcal{F}$, the homogeneous ideal defining the image in $ {\mathbb{P}^r}$ of this rational map. We present algorithms to compute the ideal of the image. These algorithms can be implemented using only the computation of Gröbner bases and syzygies, and they have been implemented in our computer algebra system Macaulay. Our methods generalize to include the case when $ X$ is an arbitrary projective scheme and $ \mathcal{F}$ is generically invertible.

References [Enhancements On Off] (What's this?)

  • [Ba] D. Bayer, The division algorithm and the Hilbert scheme, Ph.D. thesis, Harvard University, 1982.
  • [BS] D. Bayer and M. Stillman, Macaulay: A system for computation in algebraic geometry and commutative algebra, Source and object code available for Unix and Macintosh computers. Contact the authors, or ftp, Name: ftp, Password: any, cd Macaulay, binary, get M3.tar, quit, tar xf M3.tar.
  • [Buch 65] B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, Ph.D. thesis, Universität Innsbruck, 1965.
  • [Buch 85] -, Gröbner bases: An algorithmic method in polynomial ideal theory, Multidimensional Systems Theory (N. K. Bose, ed.), Reidel, 1985, pp. 184-232.
  • [Eis] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Brandeis Lecture Notes, Brandeis Univ., Waltham, Mass., 1989. MR 1322960 (97a:13001)
  • [ES] D. Eisenbud and M. Stillman, Methods for computing in algebraic geometry and commutative algebra, in preparation.
  • [Fu] W. Fulton, Algebraic curves, Benjamin, New York, 1969. MR 0313252 (47:1807)
  • [Ha] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. MR 0463157 (57:3116)
  • [FAC] J. P. Serre, Faisceaux algebriques coherents, Ann. of Math. 61 (1955), 197-278. MR 0068874 (16:953c)
  • [HSV] J. Herzog, A. Simis, and W. V. Vasconcelos, Koszul homology and blowing-up rings, Commutative Algebra, Proc. Trento Conference, 1981, pp. 79-169. MR 686942 (84k:13015)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13P10, 13A30, 13D45, 14B15

Retrieve articles in all journals with MSC: 13P10, 13A30, 13D45, 14B15

Additional Information

Keywords: Line bundle, invertible sheaf, rational map, computing, Gröbner bases, symmetric algebra, local cohomology
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society