Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Computing the equations of a variety


Authors: Michela Brundu and Mike Stillman
Journal: Trans. Amer. Math. Soc. 337 (1993), 677-690
MSC: Primary 13P10; Secondary 13A30, 13D45, 14B15
DOI: https://doi.org/10.1090/S0002-9947-1993-1091704-X
MathSciNet review: 1091704
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X \subset {\mathbb{P}^n}$ be a projective variety or subscheme, and let $ \mathcal{F}$ be an invertible sheaf on $ X$. A set of global sections of $ \mathcal{F}$ determines a map from a Zariski open subset of $ X$ to $ {\mathbb{P}^r}$. The purpose of this paper is to find, given $ X$ and $ \mathcal{F}$, the homogeneous ideal defining the image in $ {\mathbb{P}^r}$ of this rational map. We present algorithms to compute the ideal of the image. These algorithms can be implemented using only the computation of Gröbner bases and syzygies, and they have been implemented in our computer algebra system Macaulay. Our methods generalize to include the case when $ X$ is an arbitrary projective scheme and $ \mathcal{F}$ is generically invertible.


References [Enhancements On Off] (What's this?)

  • [Ba] D. Bayer, The division algorithm and the Hilbert scheme, Ph.D. thesis, Harvard University, 1982.
  • [BS] D. Bayer and M. Stillman, Macaulay: A system for computation in algebraic geometry and commutative algebra, Source and object code available for Unix and Macintosh computers. Contact the authors, or ftp zariski.harvard.edu, Name: ftp, Password: any, cd Macaulay, binary, get M3.tar, quit, tar xf M3.tar.
  • [Buch 65] B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, Ph.D. thesis, Universität Innsbruck, 1965.
  • [Buch 85] -, Gröbner bases: An algorithmic method in polynomial ideal theory, Multidimensional Systems Theory (N. K. Bose, ed.), Reidel, 1985, pp. 184-232.
  • [Eis] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960
  • [ES] D. Eisenbud and M. Stillman, Methods for computing in algebraic geometry and commutative algebra, in preparation.
  • [Fu] William Fulton, Algebraic curves. An introduction to algebraic geometry, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes written with the collaboration of Richard Weiss; Mathematics Lecture Notes Series. MR 0313252
  • [Ha] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
  • [FAC] Jean-Pierre Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197–278 (French). MR 0068874, https://doi.org/10.2307/1969915
  • [HSV] J. Herzog, A. Simis, and W. V. Vasconcelos, Koszul homology and blowing-up rings, Commutative algebra (Trento, 1981) Lecture Notes in Pure and Appl. Math., vol. 84, Dekker, New York, 1983, pp. 79–169. MR 686942

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13P10, 13A30, 13D45, 14B15

Retrieve articles in all journals with MSC: 13P10, 13A30, 13D45, 14B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1091704-X
Keywords: Line bundle, invertible sheaf, rational map, computing, Gröbner bases, symmetric algebra, local cohomology
Article copyright: © Copyright 1993 American Mathematical Society