Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Wavelets in wandering subspaces


Authors: T. N. T. Goodman, S. L. Lee and W. S. Tang
Journal: Trans. Amer. Math. Soc. 338 (1993), 639-654
MSC: Primary 42C15; Secondary 41A15, 47B38
DOI: https://doi.org/10.1090/S0002-9947-1993-1117215-0
MathSciNet review: 1117215
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Mallat's construction, via a multiresolution approximation, of orthonormal wavelets generated by a single function is extended to wavelets generated by a finite set of functions. The connection between multiresolution approximation and the concept of wandering subspaces of unitary operators in Hilbert space is exploited in the general setting. An example of multiresolution approximation generated by cardinal Hermite $ B$-splines is constructed.


References [Enhancements On Off] (What's this?)

  • [1] G. Battle, A block spin construction of ondelettes, Part I: Lemarié functions, Comm. Math. Phys. 110 (1987), 601-615. MR 895218 (88g:81054)
  • [2] G. Battle and P. Federbush, Ondelettes and phase cell cluster expansion; a vindication, Comm. Math. Phys. 109 (1987), 417-419. MR 882808 (89b:81105)
  • [3] Charles K. Chui and Jian-zhong Wang, A cardinal spline approach to wavelets, Proc. Amer. Math. Soc. 113 (1991), 785-793. MR 1077784 (92b:41019)
  • [4] -, A general framework of compactly supported splines and wavelets, J. Approx. Theory 71 (1992). MR 1191576 (94a:42043)
  • [5] I. Daubechies, Orthonormal bases of compactly supported wavelet, Comm. Pure Appl. Math. 41 (1988), 909-996. MR 951745 (90m:42039)
  • [6] P. R. Halmos, A Hilbert space problem book, 2nd ed., Springer-Verlag, 1982. MR 675952 (84e:47001)
  • [7] S. Jaffard and Y. Meyer, Bases d'ondelettes dans des ouverts de $ {R^n}$, J. Math. Pures Appl. 68 (1989), 95-108. MR 985955 (90k:46164)
  • [8] S. L. Lee, $ B$-splines for cardinal Hermite interpolation, Linear Algebra and Appl. 12 (1975), 269-280. MR 0382916 (52:3798)
  • [9] -, Fourier transforms of $ B$-splines and fundamental splines for cardinal Hermite interpolations, Proc. Amer. Math. Soc. 57 (1976), 291-296. MR 0420074 (54:8091)
  • [10] S. L. Lee and A. Sharma, Cardinal lacunary interpolation by $ g$-splines. I. The characteristic polynomials, J. Approximation Theory 16 (1976), 85-96. MR 0415141 (54:3232)
  • [11] P. G. Lemarie, Ondelettes a localisation exponentielles, J. Math. Pures Appl. 67 (1988), 227-236. MR 964171 (89m:42024)
  • [12] S. Mallat, Multiresolution approximations and wavelet orthonormal bases of $ {L^2}({\mathbf{R}})$, Trans. Amer. Math. Soc. 315 (1989), 69-87. MR 1008470 (90e:42046)
  • [13] -, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. on Pattern Analysis and Machine Intelligence 2 (1989), 674-693.
  • [14] -, Multifrequency channel decomposition of images and wavelet models, IEEE Trans. ASSP 37 (1989), 2091-2110.
  • [15] Y. Meyer, Ondelettes et fonctions splines, Seminaire Equations aux Derivees Partielles, École Polytechnique, Paris, 1986. MR 920024 (89j:42020)
  • [16] -, Principle d'incertitude, bases hilbertiennes et algèbres d'opérateurs, Bourbaki seminar, #662, 1985-1986.
  • [17] J. B. Robertson, On wandering subspaces for unitary operators, Proc. Amer. Math. Soc. 16 (1965), 233-236. MR 0174977 (30:5165)
  • [18] I. J. Schoenberg, Cardinal spline interpolation, CBMS-NSF Series in Appl. Math., no. 12, SIAM, Philadelphia, Pa., 1973. MR 0420078 (54:8095)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42C15, 41A15, 47B38

Retrieve articles in all journals with MSC: 42C15, 41A15, 47B38


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1117215-0
Keywords: Wavelets, Hilbert space, wandering subspaces, unitary operators, Hermite $ B$-splines
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society