Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Classification of the Tor-algebras of codimension four almost complete intersections


Author: Andrew R. Kustin
Journal: Trans. Amer. Math. Soc. 339 (1993), 61-85
MSC: Primary 13D03; Secondary 13C05, 13C40
DOI: https://doi.org/10.1090/S0002-9947-1993-1132435-7
MathSciNet review: 1132435
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ (R,m,k)$ be a local ring in which $ 2$ is a unit. Assume that every element of $ k$ has a square root in $ k$. We classify the algebras $ \operatorname{Tor}_ \bullet ^R(R/J,k)$ as $ J$ varies over all grade four almost complete intersection ideals in $ R$ . The analogous classification has already been found when $ J$ varies over all grade four Gorenstein ideals [21], and when $ J$ varies over all ideals of grade at most three [5, 30]. The present paper makes use of the classification, in [21], of the Tor-algebras of codimension four Gorenstein rings, as well as the (usually nonminimal) $ {\text{DG}}$-algebra resolution of a codimension four almost complete intersection which is produced in [25 and 26].


References [Enhancements On Off] (What's this?)

  • [1] E. Assmus, On the homology of local rings, Illinois J. Math. 3 (1959), 187-199. MR 0103907 (21:2670)
  • [2] L. Avramov, Homological asymptotics of modules over local rings, Commutative Algebra, Mathematical Sciences Research Institute Publications, no. 15, Springer-Verlag, Berlin, Heidelberg, New York, 1989, pp. 33-62. MR 1015512 (90i:13014)
  • [3] -, Problems on infinite free resolutions, Free Resolutoins in Commutative Algebra and Algebraic Geometry, papers from the conference held in Sundance, Utah, May 1990, (D. Eisenbud and C. Huneke, eds.), Jones and Bartlett, Boston, Mass., 1992. MR 1165313 (92m:13001)
  • [4] L. Avramov and E. Golod, Homology algebra of the Koszul complex of a local Gorenstein ring, Mat. Zametki 9 (1971), 53-58; English transl., Math. Notes 9 (1971), 30-32. MR 0279157 (43:4883)
  • [5] L. Avramov, A. Kustin, and M. Miller, Poincaré series of modules over local rings of small embedding codepth or small linking number, J. Algebra 118 (1988), 162-204. MR 961334 (89k:13013)
  • [6] D. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension $ 3$, Amer. J. Math. 99 (1977), 447-485. MR 0453723 (56:11983)
  • [7] H. Charalambous, E. G. Evans, and M. Miller, Betti numbers for modules of finite length, Proc. Amer. Math. Soc. 109 (1990), 63-70. MR 1013967 (90j:13021)
  • [8] D. Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), 35-64. MR 570778 (82d:13013)
  • [9] A. Grothendieck, Eléments de géométrie algébrique III, Inst. Hautes. Études Sci. Publ. Math. 11 (1961).
  • [10] C. Huneke and B. Ulrich, Divisor class groups and deformations, Amer. J. Math. 107 (1985), 1265-1303. MR 815763 (87f:13010)
  • [11] -, The structure of linkage, Ann. of Math. (2) 126 (1987), 277-334. MR 908149 (88k:13020)
  • [12] C. Jacobsson, A. Kustin, and M. Miller, The Poincaré series of a codimension four Gorenstein ring is rational, J. Pure Appl. Algebra 38 (1985), 255-275. MR 814181 (87f:13021)
  • [13] S. Kim, Projective resolutions of generic order ideals, Ph.D. thesis, University of Illinois, Urbana, 1988.
  • [14] A. Kustin, New examples of rigid Gorenstein unique factorization domains, Comm. Algebra 12 (1984), 2409-2439. MR 755922 (85j:13032)
  • [15] -, The minimal free resolutions of the Huneke-Ulrich deviation two Gorenstein ideals, J. Algebra 100 (1986), 265-304. MR 839583 (87i:13005)
  • [16] -, Gorenstein algebras of codimension four and characteristic two, Comm. Algebra 15 (1987), 2417-2429. MR 912779 (88j:13020)
  • [17] A. Kustin and M. Miller, Algebra structures on minimal resolutions of Gorenstein rings of embedding codimension four, Math. Z. 173 (1980), 171-184. MR 583384 (81j:13013)
  • [18] -, Structure theory for a class of grade four Gorenstein ideals, Trans. Amer. Math. Soc. 270 (1982), 287-307. MR 642342 (83h:13022)
  • [19] -, Multiplicative structure on resolutions of algebras defined by Herzog ideals, J. London Math. Soc. (2) 28 (1983), 247-260. MR 713381 (84j:13014)
  • [20] -, Tight double linkage of Gorenstein algebras, J. Algebra 95 (1985), 384-397. MR 801274 (86k:13023)
  • [21] -, Classification of the Tor-algebras of codimension four Gorenstein local rings, Math. Z. 190 (1985), 341-355. MR 806892 (87a:13022)
  • [22] A. Kustin, M. Miller, and B. Ulrich, Linkage theory for algebras with pure resolutions, J. Algebra 102 (1986), 199-228. MR 853240 (88a:13021)
  • [23] A. Kustin, M. Miller, and B. Ulrich, Generating a residual intersection, J. Algebra 146 (1992), 335-384. MR 1152909 (93b:13012)
  • [24] M. Miller, Multiplicative structures on finite free resolutions, Free Resolutions in Commutative Algebra and Algebraic Geometry, papers from the conference held in Sundance, Utah, May 1990, (D. Eisenbud and C. Huneke, eds.), Jones and Bartlett, Boston, Mass., 1992. MR 1165316 (93d:13025)
  • [25] S. Palmer, Algebra structures on resolutions of rings defined by grade four almost complete intersections, Ph.D. thesis, University of South Carolina, 1990.
  • [26] -, Algebra structures on resolutions of rings defined by grade four almost complete intersections, J. Algebra (to appear). MR 1231201 (94j:13014)
  • [27] J.-P. Serre, Sur la dimension homologique des anneaux et des modules noetheriens, Proc. Internat. Sympos. Algebraic Number Theory, 1955, Science Council of Japan, Tokyo, 1956, pp. 175-189. MR 0086071 (19:119a)
  • [28] H. Srinivasan, Minimal algebra resolutions for cyclic modules defined by Huneke-Ulrich ideals, J. Algebra 137 (1991), 433-472. MR 1094252 (92e:13007)
  • [29] J. Tate, Homology of noetherian rings and local rings, Illinois J. Math. 1 (1957), 14-27. MR 0086072 (19:119b)
  • [30] J. Weyman, On the structure of free resolutions of length $ 3$, J. Algebra 126 (1989), 1-33. MR 1023284 (91g:13019)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13D03, 13C05, 13C40

Retrieve articles in all journals with MSC: 13D03, 13C05, 13C40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1132435-7
Keywords: Almost complete intersection, Betti numbers, $ {\text{DG}}$-algebra, Gorenstein ideal, linkage, perfect ideal, Poincaré series, Tor-algebra
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society