Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Approximation of approximate fibrations by bundle maps


Author: Y. H. Im
Journal: Trans. Amer. Math. Soc. 339 (1993), 279-295
MSC: Primary 55R65; Secondary 57N15
DOI: https://doi.org/10.1090/S0002-9947-1993-1179397-4
MathSciNet review: 1179397
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we give some conditions under which approximate fibrations can be approximated by locally trivial bundle maps.


References [Enhancements On Off] (What's this?)

  • [1] G. Allaud and E. Fadell, A fiber homotopy extension theorem, Trans. Amer. Math. Soc. 104 (1962), 239-251. MR 0174057 (30:4264)
  • [2] D. R. Anderson, The Whitehead torsion of a fiber homotopy equivalence, Michigan Math. J. 21 (1974), 171-180. MR 0343283 (49:8025)
  • [3] J. Cerf, La stratification naturelle des espaces de fonctions differentiables reeles et le théorème de la pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. 39 (1970). MR 0292089 (45:1176)
  • [4] T. A. Chapman, Lectures on Hilbert cube manifolds, CBMS Regional Conf. Ser. in Math., no. 28, Amer. Math. Soc., Providence, R. I., 1976. MR 0423357 (54:11336)
  • [5] -, Approximating maps into fiber bundles by homeomorphisms, Rocky Mountain J. Math. 10 (1980), 333-350. MR 575307 (82k:57006)
  • [6] -, Approximation results in topological manifolds, Mem. Amer. Math. Soc., vol. 34, no. 251, 1981. MR 634341 (83i:57005)
  • [7] T. A. Chapman and S. Ferry, Constructing approximate fibrations, Trans. Amer. Math. Soc. 276 (1983), 757-774. MR 688976 (85b:55026)
  • [8] D. Coram and P. Duvall, Approximate fibrations, Rocky Mountain J. Math. 7 (1977), 255-288. MR 0442921 (56:1296)
  • [9] R. J. Daverman, Decompositions into codimension one submanifolds, Compositio Math. 55 (1985), 185-207. MR 795714 (87b:57016)
  • [10] -, Submanifold decompositions that induce approximate fibrations, Topology Appl. 33 (1989), 173-184. MR 1020279 (91d:57013)
  • [11] -, $ PL$ maps with manifold fibers, preprint.
  • [12] R. J. Daverman and J. J. Walsh, Decompositions into submanifolds that yield generalized manifolds, Topology Appl. 26 (1987), 143-162. MR 896870 (89c:57017)
  • [13] A. Dold and R. Lashof, Principal quasifibrations and fibre homotopy equivalence of bundles, Illinois J. Math. 3 (1959), 285-305. MR 0101521 (21:331)
  • [14] D. B. A. Epstein, Curves on $ 2$-manifolds and isotopies, Acta Math. 115 (1966), 83-107. MR 0214087 (35:4938)
  • [15] E. Fadell, On fiber homotopy equivalence, Duke Math. J. 26 (1959), 699-706. MR 0109347 (22:233)
  • [16] F. T. Farrell, The obstruction to fibering a manifold over the circle, Bull. Amer. Math. Soc. 73 (1967), 737-740. MR 0215310 (35:6151)
  • [17] F. T. Farrell and W. C. Hsiang, $ H$-cobordant manifolds are not necessarily homeomorphic, Bull. Amer. Math. Soc. 73 (1967), 741-744. MR 0215311 (35:6152)
  • [18] F. T. Farrell and L. E. Jones, Rigidity and other topological aspects of compact nonpositively curved manifolds, Bull. Amer. Math. Soc. (N.S.) 22 (1990), 59-64. MR 1001606 (90h:57023c)
  • [19] R. Goad, Approximate torus fibrations of high dimensional manifolds can be approximated by torus bundle projections, Trans. Amer. Math. Soc. 258 (1980), 87-97. MR 554320 (81c:57016)
  • [20] D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840-856. MR 0189027 (32:6454)
  • [21] M. E. Hamstrom, The space of homeomorphisms on a torus, Illinois J. Math. 9 (1965), 59-65. MR 0170334 (30:572)
  • [22] -, Homotopy groups of the space of homeomorphisms on a $ 2$-manifold, Illinois J. Math. 10 (1966), 563-573. MR 0202140 (34:2014)
  • [23] L. S. Husch, Approximating approximate fibrations by fibrations, Canad. J. Math. 29 (1977), 897-913. MR 0500990 (58:18472)
  • [24] R. C. Kirby and L. C. Siebenmann, Foundational essays on topological manifolds, smoothings and triangulations, Ann. of Math. Stud., no. 88, Princeton Univ. Press, Princeton, N. J., 1977. MR 0645390 (58:31082)
  • [25] F. Laudenbach, Sur les $ 2$-sphères d'une variéte de dimension $ 3$, Ann. of Math. (2) 97 (1973), 57-81. MR 0314054 (47:2606)
  • [26] S. Mardesic and J. Segal, Shape theory, North-Holland, Amsterdam, 1982. MR 676973 (84b:55020)
  • [27] F. Quinn, Isotopy of $ 4$-manifolds, J. Differential Geom. 24 (1986), 343-372. MR 868975 (88f:57020)
  • [28] L. C. Siebenmann, A total Whitehead torsion obstruction to fibering over the circle, Comment. Math. Helv. 45 (1970), 1-48. MR 0287564 (44:4768)
  • [29] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 0210112 (35:1007)
  • [30] J. Stasheff, A classification theorem for fiber spaces, Topology 2 (1963), 239-246. MR 0154286 (27:4235)
  • [31] N. Steenrod, The topology of fibre bundles, Princeton Univ. Press, Princeton, N. J., 1974. MR 1688579 (2000a:55001)
  • [32] F. Waldhausen, On irreducible $ 3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88. MR 0224099 (36:7146)
  • [33] C. T. C. Wall, Surgery on compact manifolds, Academic Press, New York, 1970. MR 0431216 (55:4217)
  • [34] H. Zieschang, E. Vogt and H. D. Coldeway, Surfaces and planar discontinuous group, Lecture Notes in Math., vol. 835, Springer, Berlin, 1980. MR 606743 (82h:57002)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55R65, 57N15

Retrieve articles in all journals with MSC: 55R65, 57N15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1179397-4
Keywords: Approximate fibration, locally trivial bundle, structure set, fiber homotopy equivalence, upper semicontinuous decomposition
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society